C++快速幂详解简单易懂

引言:

如果我们计算a的k次幂,循环k次每次 × a,时间复杂度O(k),现在我们要把其优化为log(k)的时间复杂度。另外a的k次幂极有可能报long long,比如2的64次幂就已经爆long long 了,所以在k很小的时候就会爆掉long long,所以题目肯定会取余,但是2的63次幂成2在取余,在相乘的过程中就已经爆掉long long了,取余也是不正确的。

所以要A*B%mod == A % mod * B % mod就可以了

注意:A / B % mod != A % mod / B % mod

证明:

在看一下y总的图:

这就是要预处理的logk + 1个数

题目:

代码:

#include <iostream>
using namespace std;

int n;

int qmi(int a, int k, int p)
{
    int res = 1;
    while (k)
    {
        if (k & 1)  res = (long long)res *  a % p;
        k >>= 1;
        a = (long long)a * a % p;
    }
    return res;
}

int main()
{
    cin >> n;
    while (n--)
    {
        int a, k, p;
        cin >> a >> k >> p;
        cout << qmi(a, k ,p) << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青茶绿梅*2

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值