Acwing-基础算法课笔记之动态规划(线性DP)

一、数字三角形

1、概述

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。
在这里插入图片描述

2、闫氏dp分析法

在这里插入图片描述
在这里插入图片描述

代码示例

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 510;
int n;
int dp[N][N], w[N][N];
int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= i; j++) {
			scanf("%d", &w[i][j]);
		}
	}
	for (int i = 1; i <= n; i++)dp[n][i] = w[n][i];//因为从底部开始往上寻找,所以将底部的dp先初始化
	for (int i = n - 1; i >= 1; i--) {
		for (int j = 1; j <= i; j++) {
			dp[i][j] = max(dp[i + 1][j] + w[i][j], dp[i + 1][j + 1] + w[i][j]);
		}
	}
	printf("%d", dp[1][1]);
	return 0;
}

二、最长上升子序列

1、概述

给定一个长度为N的数列A,求数量单调递增的子序列的长度最长是多少。A的任意子序列B可表示为 B = { A k 1 , A k 2 , . . . , A k p } B=\{A_{k_1},A_{k_2},...,A_{k_p}\} B={Ak1,Ak2,...,Akp},其中 k 1 < k 2 < ⋯ < k p k_1<k_2<\cdots<k_p k1<k2<<kp

2、闫氏dp分析法

在这里插入图片描述

3、过程模拟

如何理解所有以第i个数结尾的上升子序列
在这里插入图片描述
例如: 8 8 8为第 i i i个数,则 8 8 8前面的上升子序列为:
3 , 8 3,8 3,8
1 , 8 1,8 1,8
2 , 8 2,8 2,8
1 , 2 , 8 1,2,8 1,2,8

4、代码演示

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n;
int a[N], dp[N];
int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
	}
	for (int i = 1; i <= n; i++) {
		dp[i] = 1;
		for (int j = 1; j <= i; j++) {
			if (a[j] < a[i]) {
				dp[i] = max(dp[i], dp[j] + 1);
			}
		}
	}
	int ans = 0;
	for (int i = 1; i <= n; i++) {
		ans = max(ans, dp[i]);
	}
	printf("%d", ans);
	return 0;
}

三、最长上升子序列强化版

1、概述

由于数据范围比较大,所以只能利用二分的思想先筛选出序列中最大的数,找出该数前的最大上升子序列。

2、代码示例

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1e5 + 10;
int n;
int a[N], dp[N];
int main() {
	scanf("%d", &n);
	for (int i = 0; i < n; i++)scanf("%d", &a[i]);
	int len = 0;
	dp[0] = -2e9;
	for (int i = 0; i < n; i++) {
		int l = 0, r = len;
		while (l < r) {
			int mid = l + r + 1 >> 1;
			if (dp[mid] < a[i])l = mid;
			else r = mid - 1;
		}
		len = max(len, r + 1);
		dp[r + 1] = a[i];
	}
	printf("%d", len);
	return 0;
}

四、最长公共子序列(LCS)

1、定义

例如:
s 1 : A B C B D A B s_1:ABCBDAB s1:ABCBDAB
s 2 : B D C A B C s_2:BDCABC s2:BDCABC
D [ i ] [ j ] = s 1 D[i][j]=s_1 D[i][j]=s1 i i i个字符与 s 2 s_2 s2 j j j个字符的 L C S LCS LCS
例如: D [ 7 ] [ 6 ] = 4 D[7][6]=4 D[7][6]=4

(1)分解

1、 D [ i ] [ j ] = D [ i − 1 ] [ j − 1 ] + 1 D[i][j]=D[i-1][j-1]+1 D[i][j]=D[i1][j1]+1
2、 D [ i ] [ j ] = m a x ( D [ i − 1 ] [ j ] D [ i ] [ j − 1 ] ) D[i][j]=max\begin{pmatrix} D[i-1][j] \\ D[i][j-1] \end{pmatrix} D[i][j]=max(D[i1][j]D[i][j1])

(2)子问题

D 00 = 0 , D i 0 = 0 , D 0 j = 0 D_{00}=0,D_{i0}=0,D_{0j}=0 D00=0,Di0=0,D0j=0

2、过程模拟

在这里插入图片描述
⋇ \divideontimes 如果两个字符串的末尾字符相同,分析如下:

∙ \bullet D [ i ] [ j ] = D [ i − 1 ] [ j − 1 ] + 1 D[i][j]=D[i-1][j-1]+1 D[i][j]=D[i1][j1]+1

⋇ \divideontimes 如果两个字符串的末尾字符不同需要舍弃两字符串中的其中一个末尾的字符 x x x y y y,分析如下:

∙ \bullet 如果舍弃 s 1 s_1 s1 x x x,则 D [ i ] [ j ] = m a x ( D [ i − 1 ] [ j ] ) D[i][j]=max(D[i-1][j]) D[i][j]=max(D[i1][j])

∙ \bullet 如果舍弃 s 2 s_2 s2 y y y,则 D [ i ] [ j ] = m a x ( D [ i ] [ j − 1 ] ) D[i][j]=max(D[i][j-1]) D[i][j]=max(D[i][j1])

画表格来描述:

1、 D [ i ] [ j ] = D [ i − 1 ] [ j − 1 ] + 1 , s 1 [ i − 1 ] = s 2 [ j − 1 ] D[i][j]=D[i-1][j-1]+1,s_1[i-1]=s_2[j-1] D[i][j]=D[i1][j1]+1,s1[i1]=s2[j1]
2、 D [ i ] [ j ] = m a x ( D [ i − 1 ] [ j ] D [ i ] [ j − 1 ] ) , s 1 [ i − 1 ] ! = s 2 [ j − 1 ] D[i][j]=max\begin{pmatrix} D[i-1][j] \\ D[i][j-1] \end{pmatrix},s_1[i-1]!=s_2[j-1] D[i][j]=max(D[i1][j]D[i][j1]),s1[i1]!=s2[j1]

∅ \varnothing BDCABC
∅ \varnothing 0000000
A0
B0
C0
B0
D0
A0
B0

⇓ \Darr

∅ \varnothing BDCABC
∅ \varnothing 0000000
A0000111
B0111122
C0112223
B0112233
D0122233
A0122333
B0122344

方法: 看坐标 ( i , j ) (i,j) (i,j)的元素是否相等,如果相等则以左斜上方的数为基础加 1 1 1,否则等于左边的数。

如果不理解可以看一看这位大佬的视频

3、代码示例

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n, m;
int dp[N][N];
char a[N], b[N];
int main() {
	cin >> n >> m;
	cin >> a + 1;
	cin >> b + 1;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			if (a[i] == b[j])dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1);
			else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
		}
	}
	cout << dp[n][m];
	return 0;
}

五、最短编辑距离

1、定义

D [ i ] [ j ] D[i][j] D[i][j]等于 s 1 s_1 s1 i i i个字符编辑为 s 2 s_2 s2的前 j j j个字符它的编辑距离。
例如:
s u n sun sun编辑为 s a t u r satur satur,则 D 35 = 3 D_{35}=3 D35=3

(1)分解

⋇ \divideontimes 如果 s 1 s_1 s1 s 2 s_2 s2的末尾字符相同,则只要编辑 s i − 1 s_{i-1} si1的字符串变成 s j − 1 s_{j-1} sj1的字符串的次数
在这里插入图片描述
∙ \bullet 如果 s i − 1 s_{i-1} si1等于 s j − 1 s_{j-1} sj1,则 D [ i ] [ j ] = D [ i − 1 ] [ j − 1 ] D[i][j]=D[i-1][j-1] D[i][j]=D[i1][j1]

⋇ \divideontimes 如果 s 1 s_1 s1 s 2 s_2 s2的末尾字符不相同
在这里插入图片描述
∙ \bullet 如果 s 1 s_1 s1的字符串末尾与 s 2 s_2 s2相比少了一个 y y y,则在 s 1 s_1 s1的末尾插入 y y y,则状态转移方程为: D [ i ] [ j ] = D [ i ] [ j − 1 ] + 1 D[i][j]=D[i][j-1]+1 D[i][j]=D[i][j1]+1

∙ \bullet 如果 s 1 s_1 s1的字符串末尾与 s 2 s_2 s2相比多了一个 x x x,则删除 s 1 s_1 s1末尾的 x x x,则状态转移方程为: D [ i ] [ j ] = D [ i − 1 ] [ j ] + 1 D[i][j]=D[i-1][j]+1 D[i][j]=D[i1][j]+1

∙ \bullet 如果 s 1 s_1 s1 s 2 s_2 s2具有高度的相似性,则将 s 1 s_1 s1当中的某个字符替换成 s 2 s_2 s2当中的某个字符,则状态转移方程为: D [ i ] [ j ] = D [ i − 1 ] [ j − 1 ] + 1 D[i][j]=D[i-1][j-1]+1 D[i][j]=D[i1][j1]+1

在这三种条件中选最小

(2)子问题

D 00 = 0 , D i 0 = i , D 0 j = j D_{00}=0,D_{i0}=i,D_{0j}=j D00=0,Di0=i,D0j=j

2、过程模拟

在这里插入图片描述

∅ \varnothing satur
∅ \varnothing 012345
s1
u2
n3

⇓ \Darr

∅ \varnothing satur
∅ \varnothing 012345
s101234
u211223
n322233

方法: 如果所在同一坐标的两个字符相等,则该坐标的值等于左上方坐标的值。如果不相等,则需要考虑是插入、删除还是替换。如果是插入,则当前坐标的值等于左边坐标的值加 1 1 1。如果是删除,则当前坐标的值等于上方的值加 1 1 1。如果是替换,则当前坐标的值等于左上方的值加 1 1 1

3、代码示例

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n, m;
char a[N], b[N];
int dp[N][N];
int main() {
	scanf("%d%s", &n, a + 1);
	scanf("%d%s", &m, b + 1);
	for (int i = 1; i <= n; i++)dp[i][0] = i;
	for (int j = 1; j <= m; j++)dp[0][j] = j;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			dp[i][j] = min(dp[i][j - 1] + 1, dp[i - 1][j] + 1);
			if (a[i] == b[j])dp[i][j] = min(dp[i][j], dp[i - 1][j - 1]);
			else dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i][j]);
		}
	}
	printf("%d\n", dp[n][m]);
	return 0;
}
  • 38
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会敲代码的狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值