数据分析
文章平均质量分 91
F_D_Z
这个作者很懒,什么都没留下…
展开
-
【Python】数据可视化之聚类图
使用sns.clustermap需要注意数据集的大小和复杂性,因为聚类分析可能需要较长的计算时间。sns.clustermap主要用于绘制聚类热图,该热图通过颜色深浅来表示数据值的大小或类别,从而直观地展示数据间的相似性和差异性。在聚类热图中,每个样本被表示为一个方块,方块的颜色表示样本的特征值,方块的位置表示样本的聚类结果。sns.clustermap是Seaborn库中用于创建聚类热图的函数,该函数能够将数据集中的样本按照相似性进行聚类,并将聚类结果以矩阵的形式展示出来。按照标准化的数据绘图。原创 2024-10-07 09:25:17 · 1082 阅读 · 0 评论 -
【Python】数据可视化之热力图
热力图(Heatmap)是一种通过颜色深浅来展示数据分布、密度和强度等信息的可视化图表。它通过对色块着色来反映数据特征,使用户能够直观地理解数据模式,发现规律,并作出决策。原创 2024-09-25 14:12:08 · 1049 阅读 · 0 评论 -
【Python】数据可视化之点线图
在散点图中,每个观测值(或数据点)都被表示为一个点,其中横轴(X轴)代表一个变量的值,而纵轴(Y轴)代表另一个变量的值。Lineplot是Seaborn库中用于绘制折线图的函数,它能够帮助用户可视化数据集中不同变量之间的关系,特别是展示随时间变化的数据趋势。气泡图(Bubble Chart)是一种多变量的数据可视化图表,它是散点图的一种变体,也可以看作是散点图和百分比区域图的组合。style:控制数据点的样式或线条的样式,如点型、线型等,同样可以根据数据集中的某列进行映射。原创 2024-09-24 23:46:24 · 1417 阅读 · 0 评论 -
【Python】数据可视化之分布图
分布图主要用来展示某些现象或数据在地理空间、时间或其他维度上的分布情况。它可以清晰地反映出数据的空间位置、数量、密度等特征,帮助人们更好地理解数据的内在规律和相互关系。原创 2024-09-23 19:58:37 · 2009 阅读 · 0 评论 -
【Python】数据可视化之核密度
KDEPlot(Kernel Density Estimate Plot,核密度估计图)是seaborn库中一个用于数据可视化的函数,它基于核密度估计(KDE)这一非参数统计方法来估计数据的概率密度函数。KDEPlot能够直观地展示数据的分布特征,对于单变量和双变量数据均适用。原创 2024-09-04 12:20:50 · 1647 阅读 · 0 评论 -
【Python】数据可视化之分类图
分簇散点图Swarmplot,是一种用于展示分类变量和数值变量之间关系的数据可视化图表类型,特别适用于探索多个分类级别下数据的分布情况,简单说就是数据点不重叠的分类散点图swarmplot()作为可视化的工具,不仅能够单独使用来展现数据的分类特征,还常作为箱形图(Boxplot)或小提琴图(Violin Plot)的补充手段。这种表示方式不仅展示了数据的中心趋势(如中位数附近的密集区域),还揭示了数据的整体形状、对称性、多峰性以及可能的异常值区域,从而提供了比箱形图更为丰富和细致的数据分布信息。原创 2024-09-03 17:50:14 · 1854 阅读 · 0 评论 -
【Python】企业排名、地域分布与词云分析可视化
生成的可视化数据显示,世界五百强企业的营业收入呈现出显著的差异,这种差异不仅体现了行业内巨头企业与新兴或中小型产业代表之间的鲜明对比,还深刻揭示了不同经济领域之间市场规模的差异性。紧随其后的是由香港、上海、深圳和杭州构成的第二梯队,这些城市同样凭借其强大的经济实力、完善的产业体系和创新能力,吸引了大量五百强企业的入驻,形成了较为密集的企业集群。:Pyecharts支持多种常用的图表类型,包括但不限于折线图、柱状图、散点图、饼图、地图、热力图、雷达图、箱形图、K线图等,能够满足不同场景下的数据可视化需求。原创 2024-09-02 17:53:28 · 1563 阅读 · 0 评论 -
【Python】家庭用电数据的时序分析
数据集包含了一个家庭6个月的用电数据,收集于2007年1月至2007年6月。这些数据包括全球有功功率、全球无功功率、电压、全球强度、分项计量1(厨房)、分项计量2(洗衣房)和分项计量3(电热水器和空调)等信息。该数据集共有260,640个测量值。列名说明Date日期Time时间该家庭所消耗的总有功功率(千瓦)该家庭消耗的总无功功率(千瓦)Voltage向家庭输送电力的电压(伏特)输送到家庭的平均电流强度(安培)厨房消耗的有功功率(千瓦)洗衣房所消耗的有功功率(千瓦)原创 2024-08-31 15:58:19 · 1345 阅读 · 0 评论 -
【Python】家庭用电数据分析Prophet预测
数据集包含了一个家庭6个月的用电数据,收集于2007年1月至2007年6月。这些数据包括全球有功功率、全球无功功率、电压、全球强度、分项计量1(厨房)、分项计量2(洗衣房)和分项计量3(电热水器和空调)等信息。该数据集共有260,640个测量值。列名说明Date日期Time时间该家庭所消耗的总有功功率(千瓦)该家庭消耗的总无功功率(千瓦)Voltage向家庭输送电力的电压(伏特)输送到家庭的平均电流强度(安培)厨房消耗的有功功率(千瓦)洗衣房所消耗的有功功率(千瓦)原创 2024-08-24 15:15:07 · 1154 阅读 · 0 评论