【格与代数系统】示例

【格与代数系统】格与代数系统汇总

例1

(L,\vee,\wedge)是由(L,\leq )诱导的代数系统,则其上的二元运算满足(ABCD)

A.a\wedge b=b\wedge a.

B.a\vee a=a

C.a\wedge(a\vee b)=a

D.(a\vee b)\vee c=a\vee(b\vee c)

代数系统满足交换律、幂等律、吸收律、结合律

例2

([0,1],V,\Lambda,\ ^{c})是(ABCD)

A.有界格

有界格:有最大、最小元

B.分配格

分配格:满足分配律

C.对偶格

对偶格:复原律+对偶律

复原律:(a^{\mathrm{c}})^{\mathrm{c}}=a

对偶律:(a\bigvee b)^\mathrm{c}=a^\mathrm{c}\bigwedge b^\mathrm{c},\quad(a\bigwedge b)^\mathrm{c}=a^\mathrm{c}\bigvee b^\mathrm{c}

D.完全格

完备格:非空子集都有上下确界

([0,1],V,\Lambda,\ ^{c})不是有补格(有补格:每个元素都有补元)

对任意a \in \left ( 0,1 \right ),假设存在b \in \left [ 0,1 \right ],使得b是a的补元

即有a\vee b=1,a\wedge b=0,故b=1,b=0,矛盾,故不存在b是a的补元,故([0,1],V,\Lambda,\ ^{c})不是有补格

一般,若一个线性序集中的元素多于两个,那它一定不是有补格。

例3

代数系统([0,1],V,\Lambda,\ ^{c})是优软代数(对)

优软代数:对偶+稠密+完全+无限分配律

证:

已知([0,1],V,\Lambda,\ ^{c})是对偶格,由实数集的性质它是稠密的完全格,下正无限分配律:

一方面,对任意的$i\in I,b_i\leqslant\vee_{j\in I}b_j$,故对任意的$i\in I$a\wedge b_i\leqslant a\wedge(\vee_{j\in I}b_j),因此
\vee_{i\in I}(a\wedge b_i)\leqslant a\wedge(\vee_{j\in I}b_j)
另一方面:

(1) 若存在$i_0\in I$,使得$b_{i_0}>a$, 则 $a\wedge b_{i_0}=a$. 此时

a\wedge(\vee_{i\in I}b_i)\leqslant a=a\wedge b_{i_0}\leqslant \vee_{i\in I}(a\wedge b_i)

(2) 若对任意i\in Ib_i\leqslant a,则$a\wedge b_i= b_i$,且 $\vee_{i\in I}b_i\leqslant a$. 此时

a\wedge(\vee_{i\in I}b_i)=\vee_{i\in I}b_i=\vee_{i\in I}(a\wedge b_i)

因此,无限分配律第一个表达式成立,同理可得无限分配律第二个表达式,故无限分配律成立,故代数系统([0,1],V,\Lambda,\ ^{c})是优软代数。

例4

代数系统(\left\{0,1\right\},V,\Lambda,\ ^{c})是优软代数(错)

优软代数:对偶+稠密+完全+无限分配律

不满足稠密性

稠密性:任意两元间仍有一元

​​​​​​​

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值