线性dp

概念

具有线性阶段划分的动态规划算法叫作线性动态规划(简称线性DP)。若状态包含多个维度,则每个维度都是线性划分的阶段,也属于线性DP,如下图所示:
在这里插入图片描述

题目实践

三角形最小路径和

在这里插入图片描述
题目传送门

状态转移方程: d p i , j = m a x ( d p i − 1 , j , d p i − 1 , j − 1 ) + a i , j dp_{i,j}=max(dp_{i -1,j}, dp_{i -1,j -1})+a_{i,j} dpi,j=max(dpi1,j,dpi1,j1)+ai,j
在这里插入图片描述
边界条件:

最左边的部分和最右边的边界只会从是上一行的一个位置转移过来,只有 1 1 1 种转移方法,因此一直沿着最左边往下走和一直沿着最右边往下走的路径就是数组元素之和,先处理这两个边界

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int n=triangle.size();
        int[][] dp=new int[n][n];
        dp[0][0]=triangle.get(0).get(0);
        for(int i=1;i<n;i++){
            dp[i][0]=dp[i-1][0]+triangle.get(i).get(0);//初始化左边界-第一列
            dp[i][i]=dp[i-1][i-1]+triangle.get(i).get(i);//初始化右边界-最后一列
        }
       
        for(int i=1;i<n;i++){
            for(int j=1;j<i;j++){
                dp[i][j]=Math.min(dp[i-1][j],dp[i-1][j-1])+triangle.get(i).get(j);
            }
        }
        int ans=Integer.MAX_VALUE;
        for(int j=0;j<n;j++){//遍历最后1行 找出最大值
            ans=Math.min(ans,dp[n-1][j]);
        }
        return ans;
    }
}
//O(n^2)
//O(n^2)

空间优化:

根据状态转移方程 d p i , j = m a x ( d p i − 1 , j , d p i − 1 , j − 1 ) + a i , j dp_{i,j}=max(dp_{i -1,j}, dp_{i -1,j -1})+a_{i,j} dpi,j=max(dpi1,j,dpi1,j1)+ai,j,求当前位置的最优解时,只需 d p i − 1 , j dp_{i -1,j} dpi1,j(上一行同列)和 d p i − 1 , j − 1 dp_{i -1,j -1} dpi1,j1(上一行前一列),所以将状态优化为一维数组,从后往前倒推即可

状态表示: d p j dp_j dpj 表示从左上角走到第 j j j 列时经过的数字的最大和

状态转移方程: d p j = m a x ( d p j , d p j − 1 ) + a i , j dp_j=max(dp_j, dp_{j -1})+a_{i,j} dpj=max(dpj,dpj1)+ai,j

需要倒退的原因:

根据状态转移方程可以看出, d p j dp_j dpj 取决于上一行的 d p j dp_j dpj d p j − 1 dp_{j-1} dpj1,如果从前往后处理,会导致 d p j − 1 dp_{j-1} dpj1 提前被更新,这样当前行依赖的 d p j − 1 dp_{j-1} dpj1 不是来自上一行,而是来自本行的更新

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int n=triangle.size();
        int[] dp=new int[n];
        dp[0]=triangle.get(0).get(0);
        for(int i=1;i<n;i++){
            dp[i]=dp[i-1]+triangle.get(i).get(i);
            for(int j=i-1;j>0;j--){
                dp[j]=Math.min(dp[j-1],dp[j])+triangle.get(i).get(j);
            }
            dp[0]=dp[0]+triangle.get(i).get(0);
        }
        int ans=Integer.MAX_VALUE;
        for(int i=0;i<n;i++){
            ans=Math.min(ans,dp[i]);
        }
        return ans;
    }
}

最长递增子序列

在这里插入图片描述
题目传送门

思路:

创建一个 d p dp dp 数组

状态表示: d p i dp_i dpi 表示以 a i a_i ai 结尾的最长上升子序列长度

状态转移:对于 0 ≤ j ≤ i 0 \le j \le i 0ji ,若 a j < a i a_j < a_i aj<ai,则可以将 a i a_i ai 放在以 a j a_j aj 结尾的最长上升序列后面,得到的长度为 d p j + 1 dp_j+1 dpj+1

状态转移方程: d p i = m a x ( d p i , d p j + 1 ) dp_i=max(dp_i, dp_j+1) dpi=max(dpi,dpj+1)

class Solution {
    public int lengthOfLIS(int[] nums) {
        int n=nums.length;
        int[] dp=new int[n];
        int ans=0;
        for(int i=0;i<n;i++){
            dp[i]=1;//单个字符是长度为1的严格递增子序列
            for(int j=0;j<i;j++){
               if(nums[i]>nums[j]){
                    dp[i]=Math.max(dp[i],dp[j]+1);
               }
            }
            ans=Math.max(ans,dp[i]);
        }
        return ans;
    }
}
//O(n^2)
//O(n)

算法优化:

class Solution {
    public int lengthOfLIS(int[] nums) {
        int n=nums.length;
        //tails[k]的值代表 长度为k+1的子序列尾部元素的值
        //在遍历计算每个tails[k],不断更新长度为 [1,k]的子序列尾部元素值,始终保持每个尾部元素值最小 (例如 [1,5,3], 遍历到元素5 时,长度为 2的子序列尾部元素值为 5;当遍历到元素 3时,尾部元素值应更新至 3,因为 3 遇到比它大的数字的几率更大
        int[] tail=new int[n];
        int maxLen=1;
        tail[0]=nums[0];
        for(int i=1;i<n;i++){
            int num=nums[i];
            int left=0,right=maxLen-1;
            boolean flag=true;
            while(left<=right){
                int mid=left+(right-left)/2;
                if(num>tail[mid]){
                    left=mid+1;
                }else if(num<tail[mid]){
                    flag=false;
                    right=mid-1;
                }else if(num==tail[mid]){
                    flag=false;
                    right=mid-1;
                }
            }
            //left表示小于num的元素个数
            tail[left]=num;//长度为left的递增子序列更新为以num结尾
            //flag为true说明nums[i]大于区间[0:maxLen-1]所有的tail[i]
            //此时可以将nums[i]接在tail[maxLen-1]后面 上升子序列长度+1
            //flag为false则将nums[i]插入到tail中的合适的位置j  使得tail[0...j-1]<nums[i]<=tail[j+1...]
            //因此tail数组是单调的
            if(flag){
                maxLen++;
            }
        }
        return maxLen;
    }
}
//O(nlogn)
//O(n)

最长公共子序列

在这里插入图片描述

题目传送门

思路:

状态表示: d p i , j dp_{i, j} dpi,j 表示 x 0.. i − 1 x_{0..i-1} x0..i1 y 0.. j − 1 y_{0..j-1} y0..j1 的最长公共子序列长度

状态转移:对两个序列中的字符 x i x_i xi y j y_j yj,可以分成以下两种情况:

x i = y j x_i=y_j xi=yj:求解 x i − 1 x_i-1 xi1 y j − 1 y_j-1 yj1 的最长公共子序列长度加 1 1 1 d p i , j = d p i − 1 , j − 1 + 1 dp_{i,j}=dp_{i -1,j -1}+1 dpi,j=dpi1,j1+1
在这里插入图片描述
x i ≠ y j x_i \ne y_j xi=yj :可以把 x i x_i xi 去掉,求解 x i − 1 x_i-1 xi1 y j y_j yj 的最长公共子序列长度,或者把 y j y_j yj 去掉,求解 x i x_i xi y j − 1 y_j-1 yj1 的最长公共子序列长度,取二者的最大值, d p i , j = m a x ( d p i , j − 1 , d p i − 1 , j ) dp_{i,j}=max(dp_{i,j-1},dp_{i-1,j}) dpi,j=max(dpi,j1,dpi1,j)
在这里插入图片描述
边界条件: d p i , 0 = 0 dp_{i,0}=0 dpi,0=0 d p 0 , j = 0 dp_{0,j}=0 dp0,j=0
求解目标: d p n − 1 , m − 1 dp_{n-1,m-1} dpn1,m1 n n n m m m 分别为两个字符串的长度

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m=text1.length(),n=text2.length();
        int[][] dp=new int[m+1][n+1];
        //dp[i][j]表示text1[0:i-1]  text1[0:j-1] 的LCS长度
        //当i=0时  dp[0][j]=0 表示当text1为空串时 LCS长度为0
        //当j=0时  dp[i][0]=0 表示当text2为空串时 LCS长度为0
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                if(text1.charAt(i-1)==text2.charAt(j-1)){
                    dp[i][j]=dp[i-1][j-1]+1;
                }else if(dp[i-1][j]>dp[i][j-1]){
                    dp[i][j]=dp[i-1][j];
                }else{
                     dp[i][j]=dp[i][j-1];
                }
            }
        }
        return dp[m][n];
    }
}
//O(mn)
//O(mn)

连续子数组的最大和

在这里插入图片描述
题目传送门

状态表示: d p i dp_i dpi 表示以 a i a_i ai 结尾的最大和。注意:这个最大和不是 [ 0 … i ] [0…i] [0i] 区间的最大连续子段和,若求解 [ 0 … n − 1 ] [0…n-1] [0n1] 区间的最大连续子段和,则需要从所有 d p [ ] dp[] dp[] 中求最大值。例如 { − 2 , 1 , 2 , 3 , − 2 } \{ -2, 1, 2, 3,-2 \} {2,1,2,3,2} d p 0 = − 2 dp_0=-2 dp0=2 d p 1 = 1 dp_1=1 dp1=1 d p 2 = 2 dp_2=2 dp2=2 d p 3 = 6 dp_3=6 dp3=6 d p 4 = 4 dp_4=4 dp4=4,最大连续子段和为 6 6 6

状态转移:若 d p i − 1 dp_{i-1} dpi1 大于或等于 0 0 0,则 d p i − 1 dp_{i-1} dpi1 累加 a i a_i ai 即可;否则 d p i = a i dp_i=a_i dpi=ai; 这是因为 d p i − 1 dp_{i -1} dpi1 是负值时,对求解最大连续子段和没有意义

class Solution {
    public int maxSubArray(int[] nums) {
        int n=nums.length;
        int[] dp=new int[n];
        int ans=nums[0];
        dp[0]=nums[0];
        for(int i=1;i<n;i++){
            dp[i]=Math.max(nums[i],dp[i-1]+nums[i]);
            ans=Math.max(ans,dp[i]);
        }
        return ans;
    }
}
//O(n)
//O(n)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值