《自然语言处理NLP》—— 独热编码(One-Hot Encoding)


独热编码(One-Hot Encoding),又称一位有效编码,是表示离散变量(categorical data)的一种方法。以下是对独热编码的详细解释:

一、基本原理

独热编码将每个分类变量转换为一个二进制向量,其中只有一个位置上的值为1,其余位置上的值为0。这种编码方式将每个类别映射为一个固定长度的二进制向量,从而实现了对分类数据的数值化表示。

二、实现步骤

  1. 确定类别数量:首先,需要确定分类变量的类别数量,这将决定二进制向量的长度。
  2. 创建二进制向量:对于每个分类变量,创建一个与类别数量相等的二进制向量。
  3. 设置值为1的位置:在二进制向量中,将对应类别的位置设置为1,其余位置设置为0。

三、示例

例如我们有一句话为:“我爱北京天安门”,我们分词后对其进行one-hot编码,结果为:

  • 我:[1, 0, 0, 0]
  • 爱:[0, 1, 0, 0]
  • 北京:[0, 0, 1, 0]
  • 天安门:[0, 0, 0, 1]

四、应用场景

独热编码在机器学习和深度学习中有着广泛的应用,特别是在处理分类数据时。以下是一些具体的应用场景:

  1. 数据预处理:在数据预处理阶段
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值