简述题意
有 n n n个节点,要求将节点连接成树,然后给出节点的不同的度对应的权值,要求所有节点的权值相加总和最大。
思路
读完题后我们首先能想到n个节点的度之和是 2 n − 1 2n-1 2n−1,是固定的;这就意味着不需考虑具体的建树方式,只需找出使总和最大的度的选择情况。所谓的选择就是我们每个节点能达到的度(1~n)。且每个节点的度相加总和是 2 n − 1 2n-1 2n−1。
看完上述的分析,我们很容易能想到这是一道完全背包问题,我们将度看作重量,权值看作价值,总度数即为最大重量。
然后再来分析一下细节,由于题目要求构造成一棵树,这也就以为这所有节点都是联通的,且不构成自环,所以每个节点的度至少为1。我们不妨将所有节点的度设为1,然后每次选择都相当于将该节点的度增加。其他细节部分放到代码中注释。
实现代码(C++)
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define IOS ios::sync_with_stdio(false); cin.tie(nullptr), cout.tie(nullptr);
#define LL long long
#define ULL unsigned long long
#define PII pair<int, int>
#define lowbit(x) (x & -x)
#define Mid ((l + r) >> 1)
#define ALL(x) x.begin(), x.end()
#define endl '\n'
#define fi first
#define se second
const int INF = 0x7fffffff;
const int mod = 1e9 + 7;
const int N = 2e5 + 10;
int n, a[N], f[N];
LL res;
signed main(void) {
IOS
int all; cin >> all;
while(all -- ) {
cin >> n;
for(int i = 1; i < n; i ++ ) {
cin >> a[i];
//相当于将所有节点初始化度为1,然后就转化为了完全背包问题,
//所有的度对应的权值都减去度为1的权值,这样动态转移过程中我们计算的就是改变量最大的情况
if(i == 1) continue;
a[i] -= a[1];
}
memset(f, -0x3f, sizeof f);
f[0] = 0;
for(int i = 1; i < n - 1; i ++ ) {
for(int j = i; j < n - 1; j ++ ) {
//因为每个度对应的权值都已经减去a[1]了
//度为i,由于已经给所有节点分过一个度了,所以当度为i时,应该加上i+1的权值
f[j] = max(f[j], f[j - i] + a[i + 1]);
}
}
//所以结果再加上初始给所有节点都加上度为1的权值后即为结果
res = f[n - 2] + (LL)(n * a[1]);
cout << res << endl;
}
return 0;
}