HDU 5534 -- Partial Tree(完全背包)

原题链接
HDU 5534 – Partial Tree

简述题意

n n n个节点,要求将节点连接成树,然后给出节点的不同的度对应的权值,要求所有节点的权值相加总和最大。

思路

读完题后我们首先能想到n个节点的度之和是 2 n − 1 2n-1 2n1,是固定的;这就意味着不需考虑具体的建树方式,只需找出使总和最大的度的选择情况。所谓的选择就是我们每个节点能达到的度(1~n)。且每个节点的度相加总和是 2 n − 1 2n-1 2n1

看完上述的分析,我们很容易能想到这是一道完全背包问题,我们将度看作重量,权值看作价值,总度数即为最大重量
然后再来分析一下细节,由于题目要求构造成一棵树,这也就以为这所有节点都是联通的,且不构成自环,所以每个节点的度至少为1。我们不妨将所有节点的度设为1,然后每次选择都相当于将该节点的度增加其他细节部分放到代码中注释

实现代码(C++)

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

#define IOS ios::sync_with_stdio(false); cin.tie(nullptr), cout.tie(nullptr);
#define LL long long 
#define ULL unsigned long long 
#define PII pair<int, int>
#define lowbit(x) (x & -x)
#define Mid ((l + r) >> 1)
#define ALL(x) x.begin(), x.end()
#define endl '\n'
#define fi first 
#define se second

const int INF = 0x7fffffff;
const int mod = 1e9 + 7;
const int N = 2e5 + 10;

int n, a[N], f[N];
LL res;

signed main(void) {
	IOS

	int all; cin >> all;
	while(all -- ) {
		cin >> n;
		for(int i = 1; i < n; i ++ ) {
			cin >> a[i];
			//相当于将所有节点初始化度为1,然后就转化为了完全背包问题,
			//所有的度对应的权值都减去度为1的权值,这样动态转移过程中我们计算的就是改变量最大的情况
			if(i == 1) continue;	
			a[i] -= a[1];
		}
		memset(f, -0x3f, sizeof f);
		f[0] = 0;

		for(int i = 1; i < n - 1; i ++ ) {
			for(int j = i; j < n - 1; j ++ ) {
				//因为每个度对应的权值都已经减去a[1]了
				//度为i,由于已经给所有节点分过一个度了,所以当度为i时,应该加上i+1的权值
				f[j] = max(f[j], f[j - i] + a[i + 1]);
			}
		}
		//所以结果再加上初始给所有节点都加上度为1的权值后即为结果
		res = f[n - 2] + (LL)(n * a[1]);

		cout << res << endl;
	}

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值