2024icpc武汉站邀请赛F.Custom-Made Clothes(交互题)

本文描述了2024年ICPC武汉站邀请赛中的一个编程题目,涉及在一个给定的n×n矩阵中,通过二分查找和利用矩阵的单调性来解决查询第k大值的问题,同时限制了查询次数。参赛者需编写程序处理交互式输入输出,以满足题目的要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2024 i c p c 武汉站邀请赛 F . C u s t o m − M a d e C l o t h e s \Huge{2024icpc武汉站邀请赛F.Custom-Made Clothes} 2024icpc武汉站邀请赛F.CustomMadeClothes

文章目录


题目链接:F. Custom-Made Clothes

题意

本题是一道交互题。

给出一个 n × n n\times n n×n的矩阵, a i − 1 , j ≤ a i , j , a i , j − 1 ≤ g i , j , ( 1 ≤ a i , j ≤ n 2 ) a_{i-1,j} \le a_{i,j},a_{i,j-1} \le g_{i,j},(1\le a_{i,j}\le n^2) ai1,jai,j,ai,j1gi,j(1ai,jn2) 1 ≤ n ≤ 1000 1\le n \le 1000 1n1000

题目首先给出 n , k n,k n,k,求矩阵中第k大的值,提供不超过 50000 50000 50000次查询。

题目有两种输出:

  • ? i j x:表示查询 a i , j ≤ x a_{i,j} \le x ai,jx。返回 0 0 0 1 1 1
  • ! x:表示输出结果,即 x x x为第 k k k大的值。

思路

通过观察发现,矩阵每行和每列都具有单调性,并且答案具有单调性。

  • 因此我们可以二分答案,然后计算出当前答案为第几大的值。

  • 在计算当前答案为第几大时,直接计算显然会超过交互次数,因此我们根据每行每列的单调性来计算。

  • 对于二分过程中的 m i d mid mid,如果第 i i i行第 j j j列后面都大于 m i d mid mid,那么第 i + 1... n i+1...n i+1...n行第j列后都会大于 m i d mid mid

  • 优化后减少至少一半询问,则不会超过查询次数。

标程

bool query(int x, int y, int v) {
    cout << "? " << x << ' ' << y << ' ' << v << endl;
    fflush(stdout);

    int t; cin >> t;
    return t;
}

void Solved() { 
    int n, k; cin >> n >> k;

    k = n * n - k + 1;
    int l = 1, r = n * n, mid, res = 1;
    while(l <= r) {
        mid = l + r >> 1;
        int now = n, tmp = 0;
        for(int i = 1; i <= n; i ++ ) {
            while(now >= 1 && query(i, now, mid) == 0) now --;
            tmp += now;
            if(tmp >= k) break;
        }
        if(tmp >= k) r = mid - 1, res = mid;
        else l = mid + 1;
    }
    
    cout << "! " << res << endl;
}
<think>嗯,用户想要找2024ICPC昆明邀请赛目解析,但根据提供的引用内容,现有的资料只覆盖到2022年昆明的目,比如引用[1]提到2020、2021年的ICPC和CCPC目,以及引用[4]详细解析了2022昆明站的G。不过用户询问的是2024年的,这可能还没有公开的解析,或者可能还没有举办。需要先确认是否存在2024年的比赛信息,或者是否用户可能记错了年份?比如,2024年的比赛可能尚未举行,或者相关信息还未被整理发布。 首先,检查提供的引用内容,发现最新的昆明站信息是2022年的,引用[4]讨论的是2022昆明G。用户提到的2024年可能是个错误,或者他们希望提前获取信息。但通常比赛结束后才会有解析,所以需要告知用户目前没有相关资料,并建议他们关注官方渠道或后续的社区分享。同时,可以推荐现有的2022年昆明解作为参考,帮助用户了解型和考点,比如动态规划、期望计算等常见问。 另外,用户可能对如何准备比赛感兴趣,可以建议他们分析历年目类型,比如引用[1]提到的区域赛常考型,或者引用[3]中提到的训练经验。需要确保回答准确,避免提供不存在的资源,同时提供有用的替代信息,帮助用户找到最近的可用资料。</think>关于2024ICPC昆明邀请赛目解析,目前尚未有官方或主流平台发布完整的目解析报告。根据历史信息推测,ICPC区域赛的目解析通常会在赛后由参赛队伍、算法社区或教练团队逐步整理发布。以下是可参考的备赛建议和现有资源: --- ### 一、近期ICPC型趋势参考 1. **动态规划与组合数学** 如2022年昆明站G考察了**概率期望与递推关系**,需掌握马尔可夫链、状态转移方程的建立[^4] $$E = \sum_{i=1}^n \left( \frac{p_i}{1-p_i} \cdot \sum_{j \neq i} \frac{p_j}{1-p_i} \right)$$ 此类问常需分析极限状态下的数学期望。 2. **数据结构优化** 近年区域赛常出现需要**线段树/树状数组维护区间性质**的目,例如区间最值、历史版本查询等。 3. **图论与网络流** 包括最小割建模、分层图最短路等高级技巧,如2021年沈阳站曾出现网络流与二分答案结合的目[^2]。 --- ### 二、获取解析的途径建议 1. **官方渠道** 关注ICPC官网及昆明站承办院校的赛事公告,解析可能通过**赛后解报告会**发布。 2. **算法社区** - **Codeforces**:搜索标签`[ICPC Kunming 2024]` - **知乎/掘金**:技术博主常撰写详细解(例:2022年G推导过程) 3. **训练平台** 尝试在**Codeforces Gym**或**牛客竞赛**库中查找昆明站模拟赛--- ### 三、历届昆明站真参考 若需练习类似型,可参考2022年昆明站目: - **G(豆子操作期望)**:结合概率论与递推,需推导稳定状态下的位置关系 - **B(几何构造)**:通过坐标系变换简化多边形切割问 ```python # 示例:概率期望计算的代码框架 def calculate_expected_value(probabilities): n = len(probabilities) expected = 0.0 for i in range(n): pi = probabilities[i] term = pi / (1 - pi) if pi != 1 else 0 sum_other = sum(pj / (1 - pi) for j, pj in enumerate(probabilities) if j != i) expected += term * sum_other return expected ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值