POJ 1463 Strategic game/洛谷UVA1292(树形dp)

P O J   1463   S t r a t e g i c g a m e \Huge{POJ\ 1463\ Strategic game} POJ 1463 Strategicgame

文章目录


题目地址1:1463 – Strategic game (poj.org)

题目地址2:Strategic game - 洛谷

题目地址3:P2016 战略游戏 - 洛谷

原题在poj上,洛谷上也有但是UVa上的,第三个是洛谷本站的,题目相同。

题意

给定一棵 n n n个节点的树。你需要让这棵树上的每条边都被看守。当一条边的端点上至少有一个士兵时,我们就说这条边被看守。求出看守这棵树最少用的士兵数量。

思路

跟据题意,对于每个节点,都分别有有士兵和没有两种状态。

对于任意节点x:

  • 如果这个节点没有士兵,那么其所有子节点必须全部有士兵。
  • 如果这个节点有士兵,那么其所有子节点有无士兵都行。

那么我们可以用二维数组 f [ i ] [ j ] , ( j = 0   o r   1 ) f[i][j],(j=0\ or\ 1) f[i][j],(j=0 or 1)来表示每个节点的状态。

初始时每个节点的状态都是: f [ i ] [ 0 ] = 0 , f [ i ] [ 1 ] = 1 f[i][0]=0,f[i][1]=1 f[i][0]=0,f[i][1]=1

那么状态转移方程为( j j j i i i的子节点):
{ f [ i ] [ 0 ] = ∑ f [ j ] [ 1 ] f [ i ] [ 1 ] = ∑ m i n ( f [ j ] [ 0 ] , f [ j ] [ 1 ] ) \left\{\begin{matrix} & f[i][0]=\sum{f[j][1]}\\ & f[i][1]=\sum{min(f[j][0],f[j][1])} \end{matrix}\right. {f[i][0]=f[j][1]f[i][1]=min(f[j][0],f[j][1])
最后我们用dfs递归到叶节点,然后向上返回并进行状态转移即可。

标程

const int N = 2000 + 10; 

int n, f[N][2];
vector<int> a[N];

void init() {
    memset(f, 0, sizeof f);
    for(int i = 0; i < n; i ++ ) a[i].clear();
}

void dfs(int x, int y) {
    f[x][0] = 0; f[x][1] = 1;
    if(a[x].empty()) return;

    for(auto i : a[x]) {
        if(i == y) continue;
        dfs(i, x);
        f[x][0] += f[i][1];
        f[x][1] += min(f[i][0], f[i][1]);
    }
}

void Solved() {
    while(cin >> n) {
        //cin >> n
        init();
        for(int i = 0; i < n; i ++ ) {
            int x, sum; scanf("%d:(%d)", &x, &sum);
            //cin >> x >> sum;
            while(sum -- ) {
                int y; cin >> y;
                a[x].push_back(y); a[y].push_back(x);
            }
        }
        dfs(0, 0);

        cout << min(f[0][0], f[0][1]) << endl;
    }
}
  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值