第39讲|决策树与作物分布建模:可解释的AI助力农业智能推演

目录

📌 导语:为什么要做“作物分布建模”?

🧠 决策树,天然适合作物分类

🌍 应用场景设定

▶️ 数据结构(每个像元一条记录):

🔧 模型构建(R语言实现)

▶️ Step 1:准备数据

▶️ Step 2:构建决策树模型

▶️ Step 3:可视化决策路径

📈 模型评估

🛰️ GIS与栅格映射:地理空间分布建图

📌 优势总结

🔭 延伸思考

📚 推荐阅读


本讲关键词:决策树、作物分布、栅格数据建模、可解释性、可视化分类树、GIS集成


📌 导语:为什么要做“作物分布建模”?

在农业研究与管理中,弄清楚哪种作物分布在什么地方,是农业资源配置、产量估算和粮食安全的基础性任务。

传统的作物分布监测手段依赖遥感图像人工判读,耗时费力。随着**机器学习算法(如决策树)**的兴起,我们可以结合多源数据快速构建“作物分布图谱”。


🧠 决策树,天然适合作物分类

决策树(Decision Tree)是一种简单、直观且可解释性强的监督学习方法,非常适用于:

  • 分类作物种类(如:玉米/水稻/小麦)

  • 预测某地是否适合种植某种作物

  • 分析环境因子与作物出现的关系

它的最大优势在于:可视化逻辑清晰、适合小数据建模、容易结合GIS应用。


🌍 应用场景设定

我们以某区域的遥感+气象+地形数据为基础,构建作物分布预测模型。

▶️ 数据结构(每个像元一条记录):

NDVI 土地坡度 年降水量 年均温 土地类型 作物种类
0.72 3.1° 830mm 17.8°C 耕地 玉米
0.55 5.4°
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chh0715

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值