第33讲|遥感大模型在地学分类中的初探与实战

目录

🧠 一、什么是“遥感大模型”?

📚 二、遥感大模型在地学分类中的优势

📍三、案例:使用 Segment Anything Model (SAM) 进行遥感地物分割

📦 1. 安装与依赖配置(PyTorch)

🖼 2. 读取遥感图像(可用 Sentinel-2 伪彩色图)

🔧 3. SAM 模型载入

💡 4. 用户点击辅助(模拟点击一片水域)

📌 5. 导出分割结果并叠加可视化

🔍 四、更多可探索方向

🧭 五、总结


🌏 遥感 + 大模型,会碰撞出怎样的火花?在遥感影像海量涌现的今天,深度学习已经不再是新鲜词,而“大模型”的出现,为遥感地学分类带来了新一轮范式革命。

本讲内容将带你初探遥感大模型的应用边界,并以真实遥感影像数据为例,走通从模型加载、微调到地学类型识别的完整流程!


🧠 一、什么是“遥感大模型”?

近年来,类似 GPT、SAM(Segment Anything Model)、CLIP 等“大模型”开始进入遥感领域:

名称 功能 应用举例
SAM 任意目标分割 基于遥感图像的建筑、植被、道路提取
CLIP 图文对齐模型 地表类型语义标注
DINOv2 图像自监督编码器 地类提取、特征迁移
SatMAE、i-SAM 专为遥感设计的大模型 海量遥感数据的自监督学习与迁移

遥感大模型的本质:在大规模遥感图像上预训练,具备强泛化能力,能够微调或零样本适应下游任务,比如地类识别、地物检测等。


📚 二、遥感大模型在地学分类中的优势

  1. 少量样本也能搞定任务(Few-shot)

  2. 迁移性强,适用于不同地区的遥感数据

  3. 降低人工标注成本

  4. 可解释性逐渐增强(如 Attention Heatmap 可视化)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chh0715

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值