目录
在上一讲中,我们聊了“遥感+边缘计算”如何成为农业感知神经系统的关键部分。而本讲,我们要实打实来一次“手把手实操”:通过Jetson Nano部署一个图像识别模型,实现农田图像中的作物识别与病害检测。
🧭 一、项目目标与准备
🎯 项目目标:
使用边缘设备(Jetson Nano)部署轻量化神经网络模型,对来自无人机或固定相机采集的农田图像,进行实时作物类型识别与病害检测。
🔧 所需设备:
项目 | 说明 |
---|---|
Jetson Nano | NVIDIA推出的AI边缘计算设备 |
摄像头/图像源 | 田间摄像头、无人机、地面采集图像 |
SD卡、电源等 | 基础配件 |
显示器+键盘 | 调试环境 |
📂 二、数据准备与模型训练(PC端)
我们先在PC端训练模型,再部署到Jetson。
1️⃣ 图像数据准备
-
数据集:可使用Kaggle上的“PlantVillage”或自己拍摄的遥感图像;
-
类别样本:如水稻、玉米、小麦、纹枯病、叶斑病等;
文件结构示例:
dataset/
├── rice/
├── wheat/
├── maize/
├── rice_blight/
2️⃣ 模型选型与训练(以 MobileNet 为例)
使用 TensorFlow Keras
: