第43讲:部署自己的边缘AI农田监测案例 —— Jetson Nano + 遥感图像识别实战

目录

🧭 一、项目目标与准备

🎯 项目目标:

🔧 所需设备:

📂 二、数据准备与模型训练(PC端)

1️⃣ 图像数据准备

2️⃣ 模型选型与训练(以 MobileNet 为例)

✅ 模型保存:

🔄 三、模型转换为Jetson可用格式(TensorRT)

1️⃣ 转换为 .tflite 格式(适合轻量部署):

💻 四、Jetson Nano 上部署步骤

🛠️ 1. 安装依赖:

🧪 2. 推理脚本代码:

🧠 五、延伸拓展与优化建议

🏁 结语:你也可以打造“田间最强大脑”


在上一讲中,我们聊了“遥感+边缘计算”如何成为农业感知神经系统的关键部分。而本讲,我们要实打实来一次“手把手实操”:通过Jetson Nano部署一个图像识别模型,实现农田图像中的作物识别与病害检测


🧭 一、项目目标与准备

🎯 项目目标:

使用边缘设备(Jetson Nano)部署轻量化神经网络模型,对来自无人机或固定相机采集的农田图像,进行实时作物类型识别与病害检测

🔧 所需设备:

项目 说明
Jetson Nano NVIDIA推出的AI边缘计算设备
摄像头/图像源 田间摄像头、无人机、地面采集图像
SD卡、电源等 基础配件
显示器+键盘 调试环境

📂 二、数据准备与模型训练(PC端)

我们先在PC端训练模型,再部署到Jetson。

1️⃣ 图像数据准备

  • 数据集:可使用Kaggle上的“PlantVillage”或自己拍摄的遥感图像;

  • 类别样本:如水稻、玉米、小麦、纹枯病、叶斑病等;

文件结构示例:

dataset/
├── rice/
├── wheat/
├── maize/
├── rice_blight/

2️⃣ 模型选型与训练(以 MobileNet 为例)

使用 TensorFlow Keras

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chh0715

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值