目录
导语:
土壤,地球的皮肤,它藏着气候变化的线索、作物丰产的密码,也是碳循环的核心载体。今天,我们不搞玄学——咱们用机器学习(ML),给“土壤说话”的机会,看看数据能告诉我们什么。
🪨 一、为什么要对土壤做机器学习建模?
你有没有遇到过这些问题:
-
为什么两块田地施一样的肥,却长得差距很大?
-
盐渍土中,哪些指标最影响有机碳?
-
怎么通过已有土样数据预测某区域未采样地块的属性?
传统土壤调查靠经验、插值、统计回归,而机器学习(ML),能处理非线性关系、变量交互、海量数据,为我们提供智能建模的新视角。
🧱 二、案例:预测土壤有机碳含量(SOC)
我们以“预测土壤有机碳含量(SOC)”为例,做一次完整实战。
🌾 数据来源:
-
土壤采样数据(地点、深度、有机碳等)
-
环境因子:NDVI、DEM、气温、降水、土地利用类型等
# 示例数据结构(R语言)
str(soil_data)
## 'data.frame': 500 obs. of 8 variables:
## $ SOC : num
## $ NDVI : num
## $ Elev : num
## $ Rain : num
## $ Temp : num
## $ LU_type : Factor w/ 5 levels "forest","cropland",...
## $ lon : num
## $ lat : num
🤖 三、建模流程 Step-by-Step
1️⃣ 数据预处理
library(tidyverse)
soil_data <- soil_data %>%
drop_na() %>%
mutate(LU_type = as.factor(LU_type))
2️⃣ 特征工程与建模(Random Forest)
library(randomForest)
set.seed(123)
rf_model <- randomForest(SOC ~ ., data = soil_data[, -c(7,8)], ntree=500, importance=TRUE)
print(rf_model)
🌟 重要变量可视化:
varImpPlot(rf_model)
你可能会发现:NDVI、降水、土地类型是预测SOC的关键因子!
🧪 四、模型评估与空间预测
🧮 拆分训练测试集:
library(caret)
set.seed(42)
split <- createDataPartition(soil_data$SOC, p = 0.8, list = FALSE)
train <- soil_data[split, ]
test <- soil_data[-split, ]
rf <- randomForest(SOC ~ ., data = train[, -c(7,8)])
pred <- predict(rf, newdata = test)
RMSE <- sqrt(mean((pred - test$SOC)^2))
R2 <- cor(pred, test$SOC)^2
cat("模型性能:RMSE =", round(RMSE, 2), "; R² =", round(R2, 2))
🗺️ 五、扩展:基于遥感的空间预测图
你还可以结合 raster
包或 terra
包,对遥感图层进行预测,绘出SOC空间分布图!
library(raster)
stacked_env <- stack("NDVI.tif", "Rain.tif", "Temp.tif", "LU_type.tif")
names(stacked_env) <- c("NDVI", "Rain", "Temp", "LU_type")
pred_map <- predict(stacked_env, rf_model, progress='text')
plot(pred_map, main="预测SOC空间分布图")
💡 六、延伸阅读与技巧
模型推荐 | 优点 | 工具包 |
---|---|---|
Random Forest | 抗噪强、变量重要性明显 | randomForest |
XGBoost | 表现优越、可调参数丰富 | xgboost |
Support Vector | 小数据集强大表现 | e1071 |
神经网络(MLP) | 可建更复杂关系 | nnet , keras |
你还可以:
-
使用 贝叶斯建模 加入不确定性;
-
构建 土壤数字孪生 模型,辅助模拟与预测;
-
与空间聚类结合,探索土壤类型与环境因子的内在关系。
📦 七、总结:从土壤数据,到科学洞见!
在这篇分享中,我们:
✅ 理解了为什么土壤建模值得做
✅ 完成了一个完整的 SOC 预测建模流程
✅ 实现了从点数据到空间预测图的跨越
✅ 初窥机器学习与农业环境科学融合的威力
土壤并不沉默,它有它的语言。机器学习,正是你与它对话的桥梁。