蓝桥杯每日一题:奶牛选美(DSF)

听说最近两斑点的奶牛最受欢迎,约翰立即购进了一批两斑点牛。

不幸的是,时尚潮流往往变化很快,当前最受欢迎的牛变成了一斑点牛。

约翰希望通过给每头奶牛涂色,使得它们身上的两个斑点能够合为一个斑点,让它们能够更加时尚。

牛皮可用一个 N×M 的字符矩阵来表示,如下所示:

................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....

其中,X 表示斑点部分。

如果两个 X 在垂直或水平方向上相邻(对角相邻不算在内),则它们属于同一个斑点,由此看出上图中恰好有两个斑点。

约翰牛群里所有的牛都有两个斑点

约翰希望通过使用油漆给奶牛尽可能少的区域内涂色,将两个斑点合为一个。

在上面的例子中,他只需要给三个 .. 区域内涂色即可(新涂色区域用 ∗∗ 表示):

................
..XXXX....XXX...
...XXXX*...XX...
.XXXX..**..XXX..
........XXXXX...
.........XXX....

请帮助约翰确定,为了使两个斑点合为一个,他需要涂色区域的最少数量。

输入格式

第一行包含两个整数 N和 M。

接下来 N 行,每行包含一个长度为 M 的由 X 和 .. 构成的字符串,用来表示描述牛皮图案的字符矩阵。

输出格式

输出需要涂色区域的最少数量。

数据范围

1≤N,M≤50

输入样例:
6 16
................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....
输出样例:
3

听说最近两斑点的奶牛最受欢迎,约翰立即购进了一批两斑点牛。

不幸的是,时尚潮流往往变化很快,当前最受欢迎的牛变成了一斑点牛。

约翰希望通过给每头奶牛涂色,使得它们身上的两个斑点能够合为一个斑点,让它们能够更加时尚。

牛皮可用一个 N×M�×� 的字符矩阵来表示,如下所示:

................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....

其中,X� 表示斑点部分。

如果两个 X� 在垂直或水平方向上相邻(对角相邻不算在内),则它们属于同一个斑点,由此看出上图中恰好有两个斑点。

约翰牛群里所有的牛都有两个斑点

约翰希望通过使用油漆给奶牛尽可能少的区域内涂色,将两个斑点合为一个。

在上面的例子中,他只需要给三个 .. 区域内涂色即可(新涂色区域用 ∗∗ 表示):

................
..XXXX....XXX...
...XXXX*...XX...
.XXXX..**..XXX..
........XXXXX...
.........XXX....

请帮助约翰确定,为了使两个斑点合为一个,他需要涂色区域的最少数量。

输入格式

第一行包含两个整数 N� 和 M�。

接下来 N� 行,每行包含一个长度为 M� 的由 X� 和 .. 构成的字符串,用来表示描述牛皮图案的字符矩阵。

输出格式

输出需要涂色区域的最少数量。

数据范围

1≤N,M≤501≤�,�≤50

输入样例:
6 16
................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....
输出样例:
3

 参考代码:

/*
统计两个团的所有点的坐标,双重遍历一边利用曼哈顿距离找到两图形中最近的两点的距离;
*/
#include<iostream>
#include<algorithm>
#include<vector>

#define x first
#define y second

using namespace std;
typedef pair<int, int> PII;
const int N = 55;
vector<PII> points[2];
int n,m;
char g[N][N];
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};



void dfs(int x,int y,vector<PII> &ps)
{
    g[x][y] = '.';
    ps.push_back({x,y});
    for(int i=0;i<4;i++)
    {
        int a = x + dx[i] ,b = y + dy[i];
        if(g[a][b]=='X')
          dfs(a,b,ps);
    }
}

int main()
{
    cin>>n>>m;
    for(int i=0;i<n;i++) cin>>g[i];
    
    for(int i=0,k=0;i<n;i++)
       for(int j=0;j<m;j++)
         if(g[i][j]=='X')
            dfs(i,j,points[k++]);
            
    int res = 1e9;
    for(auto &a : points[0])
      for(auto &b :points[1])
         res = min(res,abs(a.x-b.x)+abs(a.y-b.y)-1);
    cout<<res;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cocobol0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值