听说最近两斑点的奶牛最受欢迎,约翰立即购进了一批两斑点牛。
不幸的是,时尚潮流往往变化很快,当前最受欢迎的牛变成了一斑点牛。
约翰希望通过给每头奶牛涂色,使得它们身上的两个斑点能够合为一个斑点,让它们能够更加时尚。
牛皮可用一个 N×M 的字符矩阵来表示,如下所示:
................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....
其中,X 表示斑点部分。
如果两个 X 在垂直或水平方向上相邻(对角相邻不算在内),则它们属于同一个斑点,由此看出上图中恰好有两个斑点。
约翰牛群里所有的牛都有两个斑点。
约翰希望通过使用油漆给奶牛尽可能少的区域内涂色,将两个斑点合为一个。
在上面的例子中,他只需要给三个 .. 区域内涂色即可(新涂色区域用 ∗∗ 表示):
................
..XXXX....XXX...
...XXXX*...XX...
.XXXX..**..XXX..
........XXXXX...
.........XXX....
请帮助约翰确定,为了使两个斑点合为一个,他需要涂色区域的最少数量。
输入格式
第一行包含两个整数 N和 M。
接下来 N 行,每行包含一个长度为 M 的由 X 和 .. 构成的字符串,用来表示描述牛皮图案的字符矩阵。
输出格式
输出需要涂色区域的最少数量。
数据范围
1≤N,M≤50
输入样例:
6 16
................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....
输出样例:
3
听说最近两斑点的奶牛最受欢迎,约翰立即购进了一批两斑点牛。
不幸的是,时尚潮流往往变化很快,当前最受欢迎的牛变成了一斑点牛。
约翰希望通过给每头奶牛涂色,使得它们身上的两个斑点能够合为一个斑点,让它们能够更加时尚。
牛皮可用一个 N×M�×� 的字符矩阵来表示,如下所示:
................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....
其中,X� 表示斑点部分。
如果两个 X� 在垂直或水平方向上相邻(对角相邻不算在内),则它们属于同一个斑点,由此看出上图中恰好有两个斑点。
约翰牛群里所有的牛都有两个斑点。
约翰希望通过使用油漆给奶牛尽可能少的区域内涂色,将两个斑点合为一个。
在上面的例子中,他只需要给三个 .. 区域内涂色即可(新涂色区域用 ∗∗ 表示):
................
..XXXX....XXX...
...XXXX*...XX...
.XXXX..**..XXX..
........XXXXX...
.........XXX....
请帮助约翰确定,为了使两个斑点合为一个,他需要涂色区域的最少数量。
输入格式
第一行包含两个整数 N� 和 M�。
接下来 N� 行,每行包含一个长度为 M� 的由 X� 和 .. 构成的字符串,用来表示描述牛皮图案的字符矩阵。
输出格式
输出需要涂色区域的最少数量。
数据范围
1≤N,M≤501≤�,�≤50
输入样例:
6 16
................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....
输出样例:
3
参考代码:
/*
统计两个团的所有点的坐标,双重遍历一边利用曼哈顿距离找到两图形中最近的两点的距离;
*/
#include<iostream>
#include<algorithm>
#include<vector>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 55;
vector<PII> points[2];
int n,m;
char g[N][N];
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
void dfs(int x,int y,vector<PII> &ps)
{
g[x][y] = '.';
ps.push_back({x,y});
for(int i=0;i<4;i++)
{
int a = x + dx[i] ,b = y + dy[i];
if(g[a][b]=='X')
dfs(a,b,ps);
}
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++) cin>>g[i];
for(int i=0,k=0;i<n;i++)
for(int j=0;j<m;j++)
if(g[i][j]=='X')
dfs(i,j,points[k++]);
int res = 1e9;
for(auto &a : points[0])
for(auto &b :points[1])
res = min(res,abs(a.x-b.x)+abs(a.y-b.y)-1);
cout<<res;
return 0;
}