蓝桥杯每日一题:扫雷(Flood Fill)

题目描述:

扫雷是一种计算机游戏,在 2020 世纪 8080 年代开始流行,并且仍然包含在某些版本的 Microsoft Windows 操作系统中。

在这个问题中,你正在一个矩形网格上玩扫雷游戏。

最初网格内的所有单元格都呈未打开状态。

其中 M 个不同的单元格中隐藏着 M 个地雷。

其他单元格内不包含地雷。

你可以单击任何单元格将其打开。

如果你点击到的单元格中包含一个地雷,那么游戏就会判定失败。

如果你点击到的单元格内不含地雷,则单元格内将显示一个 00 到 88 之间的数字(包括 00 和 88),这对应于该单元格的所有相邻单元格中包含地雷的单元格的数量。

如果两个单元格共享一个角或边,则它们是相邻单元格。

另外,如果某个单元格被打开时显示数字 0,那么它的所有相邻单元格也会以递归方式自动打开。

当所有不含地雷的单元格都被打开时,游戏就会判定胜利。

例如,网格的初始状态可能如下所示(* 表示地雷,而 c 表示第一个点击的单元格):

*..*...**.
....*.....
..c..*....
........*.
..........

被点击的单元格旁边没有地雷,因此当它被打开时显示数字 0,并且它的 8 个相邻单元也被自动打开,此过程不断继续,最终状态如下:

*..*...**.
1112*.....
00012*....
00001111*.
00000001..

此时,仍有不包含地雷的单元格(用 . 字符表示)未被打开,因此玩家必须继续点击未打开的单元格,使游戏继续进行。

你想尽快赢得游戏胜利并希望找到赢得游戏的最低点击次数。

给定网格的尺寸(N×N),输出能够获胜的最小点击次数。

输入格式

第一行包含整数 T,表示共有 T组测试数据。

每组数据第一行包含整数 N,表示游戏网格的尺寸大小。

接下来 N行,每行包含一个长度为 N 的字符串,字符串由 .(无雷)和 *(有雷)构成,表示游戏网格的初始状态。

输出格式

每组数据输出一个结果,每个结果占一行。

结果表示为 Case #x: y,其中 x 是组别编号(从 11 开始),y是获胜所需的最小点击次数。

数据范围

1≤T≤100,
1≤N≤300

输入样例:
2
3
..*
..*
**.
5
..*..
..*..
.*..*
.*...
.*...
输出样例:
Case #1: 2
Case #2: 8
难度:简单
时/空限制:1s / 64MB
总通过数:2945
总尝试数:5458
来源:

Google Kickstart2014 Round C Problem A

算法标签

解题思路:

遍历一遍图,标记好雷(-1),周围有雷的(标记为雷的数目),无雷(0)

进行一遍 “洪水灌溉” 方法为0的点及其周围的安全点全部标记,每次遇到一个0则cnt++;

最后将没有标记及周围有雷且也没有没0点“灌溉”的点标记。

参考代码:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 310;
char g[N][N];
int st[N][N];
int T,n;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};


void dfs(int x,int y)
{
    int t = st[x][y];
    st[x][y] = -1;
    if(t) return;//当遇到周围有雷点返回
    
    for(int i=x-1;i<=x+1;i++)
      for(int j=y-1;j<=y+1;j++)
        if(i>=0 && i<n && j>=0 && j<n &&st[i][j]!=-1)
            dfs(i,j);
}

int main()
{
    cin>>T;
    for(int c=1;c<=T;c++)
    {
        memset(st,0,sizeof st);
        cin>>n;
        for(int i=0;i<n;i++) cin>>g[i];
        for(int i=0;i<n;i++)
          for(int j=0;j<n;j++)
               if(g[i][j]=='*') st[i][j] = -1;
               else
               {
                   for(int x=i-1;x<=i+1;x++)
                     for(int y=j-1;y<=j+1;y++)
                           if(x>=0 && x<n && y>=0 && y<n && g[x][y]=='*') st[i][j]++;
               }
        
        int res = 0;
        for(int i=0;i<n;i++)
          for(int j=0;j<n;j++)
            if(!st[i][j])
            {
                res++;
                dfs(i,j);
            }
        for(int i=0;i<n;i++)
          for(int j=0;j<n;j++)
            if(st[i][j]!=-1)
              res++;
        printf("Case #%d: %d\n",c,res);      
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cocobol0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值