题目描述:
扫雷是一种计算机游戏,在 2020 世纪 8080 年代开始流行,并且仍然包含在某些版本的 Microsoft Windows 操作系统中。
在这个问题中,你正在一个矩形网格上玩扫雷游戏。
最初网格内的所有单元格都呈未打开状态。
其中 M 个不同的单元格中隐藏着 M 个地雷。
其他单元格内不包含地雷。
你可以单击任何单元格将其打开。
如果你点击到的单元格中包含一个地雷,那么游戏就会判定失败。
如果你点击到的单元格内不含地雷,则单元格内将显示一个 00 到 88 之间的数字(包括 00 和 88),这对应于该单元格的所有相邻单元格中包含地雷的单元格的数量。
如果两个单元格共享一个角或边,则它们是相邻单元格。
另外,如果某个单元格被打开时显示数字 0,那么它的所有相邻单元格也会以递归方式自动打开。
当所有不含地雷的单元格都被打开时,游戏就会判定胜利。
例如,网格的初始状态可能如下所示(*
表示地雷,而 c
表示第一个点击的单元格):
*..*...**.
....*.....
..c..*....
........*.
..........
被点击的单元格旁边没有地雷,因此当它被打开时显示数字 0,并且它的 8 个相邻单元也被自动打开,此过程不断继续,最终状态如下:
*..*...**.
1112*.....
00012*....
00001111*.
00000001..
此时,仍有不包含地雷的单元格(用 .
字符表示)未被打开,因此玩家必须继续点击未打开的单元格,使游戏继续进行。
你想尽快赢得游戏胜利并希望找到赢得游戏的最低点击次数。
给定网格的尺寸(N×N),输出能够获胜的最小点击次数。
输入格式
第一行包含整数 T,表示共有 T组测试数据。
每组数据第一行包含整数 N,表示游戏网格的尺寸大小。
接下来 N行,每行包含一个长度为 N 的字符串,字符串由 .
(无雷)和 *
(有雷)构成,表示游戏网格的初始状态。
输出格式
每组数据输出一个结果,每个结果占一行。
结果表示为 Case #x: y
,其中 x 是组别编号(从 11 开始),y是获胜所需的最小点击次数。
数据范围
1≤T≤100,
1≤N≤300
输入样例:
2
3
..*
..*
**.
5
..*..
..*..
.*..*
.*...
.*...
输出样例:
Case #1: 2
Case #2: 8
难度:简单 |
时/空限制:1s / 64MB |
总通过数:2945 |
总尝试数:5458 |
来源: |
算法标签 |
解题思路:
遍历一遍图,标记好雷(-1),周围有雷的(标记为雷的数目),无雷(0)
进行一遍 “洪水灌溉” 方法为0的点及其周围的安全点全部标记,每次遇到一个0则cnt++;
最后将没有标记及周围有雷且也没有没0点“灌溉”的点标记。
参考代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 310;
char g[N][N];
int st[N][N];
int T,n;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
void dfs(int x,int y)
{
int t = st[x][y];
st[x][y] = -1;
if(t) return;//当遇到周围有雷点返回
for(int i=x-1;i<=x+1;i++)
for(int j=y-1;j<=y+1;j++)
if(i>=0 && i<n && j>=0 && j<n &&st[i][j]!=-1)
dfs(i,j);
}
int main()
{
cin>>T;
for(int c=1;c<=T;c++)
{
memset(st,0,sizeof st);
cin>>n;
for(int i=0;i<n;i++) cin>>g[i];
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(g[i][j]=='*') st[i][j] = -1;
else
{
for(int x=i-1;x<=i+1;x++)
for(int y=j-1;y<=j+1;y++)
if(x>=0 && x<n && y>=0 && y<n && g[x][y]=='*') st[i][j]++;
}
int res = 0;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(!st[i][j])
{
res++;
dfs(i,j);
}
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(st[i][j]!=-1)
res++;
printf("Case #%d: %d\n",c,res);
}
return 0;
}