Java实现二叉树

本文详细介绍了树型结构的基本概念,包括根结点、度、叶子结点等,并阐述了树的表示方法和应用。接着,重点讨论了二叉树,包括其概念、特殊类型(满二叉树和完全二叉树)、性质以及存储方式。最后,探讨了二叉树的遍历方法,如前序、中序、后序和层序遍历,强调了遍历在二叉树操作中的重要性。
摘要由CSDN通过智能技术生成

目录

一、树型结构

1、概念  

2、树的具体概念 

3、树的表示形式 

4、树的应用

二、二叉树

1、概念

2、两种特殊的二叉树

3、二叉树的性质

4、二叉树的存储

5、二叉树的基本操作

(1)前置说明

(2)二叉树的遍历


一、树型结构

1、概念  

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看 起来像一棵倒挂的树 也就是说它是根朝上,而叶朝下的 。它具有以下的特点:
1、有一个特殊的结点,称为根结点,根结点没有前驱结点
2、除根结点外,其余结点被分成 M(M > 0) 个互不相交的集合 T1 T2 ...... Tm ,其中每一个集合 Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有 0 个或多个后继
3、树是递归定义的。

 

注意:树形结构中,子树之间不能有交集,否则就不是树形结构 


2、树的具体概念 

为了更好地理解树中一些关键名词的概念,我们选择图文结合的方式来介绍这些概念: 

结点的度 :一个结点含有子树的个数称为该结点的度; 如上图: A 的度为 6
树的度 :一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为 6
叶子结点或终端结点 :度为 0 的结点称为叶结点; 如上图: B C H I... 等节点为叶结点
双亲结点或父结点 :若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图: A B 的父结点
孩子结点或子结点 :一个结点含有的子树的根结点称为该结点的子结点; 如上图: B A 的孩子结点
根结点 :一棵树中,没有双亲结点的结点;如上图: A
结点的层次 :从根开始定义起,根为第 1 层,根的子结点为第 2 层,以此类推
树的高度或深度 :树中结点的最大层次; 如上图:树的高度为 4

 树的以下概念只需了解,在看书时只要知道是什么意思即可:

非终端结点或分支结点 :度不为 0 的结点; 如上图: D E F G... 等节点为分支结点
兄弟结点 :具有相同父结点的结点互称为兄弟结点; 如上图: B C 是兄弟结点
堂兄弟结点 :双亲在同一层的结点互为堂兄弟;如上图: H I 互为兄弟结点
结点的祖先 :从根到该结点所经分支上的所有结点;如上图: A 是所有结点的祖先
子孙 :以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是 A 的子孙
森林 :由 m m>=0 )棵互不相交的树组成的集合称为森林

3、树的表示形式 

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如: 双亲表示法孩子表示法孩子双亲表示法孩子兄弟表示法 等等。我们这里就简单的了解其中最常用的 孩子兄弟表示法
    class Node {
        int value; // 树中存储的数据
        Node firstChild; // 第一个孩子引用
        Node nextBrother; // 下一个兄弟引用
    }


4、树的应用

在生活中,我们运用二叉树可以来妥善管理一些数据例如:

文件系统管理(目录和文件)


二、二叉树

1、概念

一棵二叉树是结点的一个有限集合,该集合:
        1. 或者为空
        2. 或者是由 一个根节点 加上两棵别称为 左子树 右子树 的二叉树组成。

从上图可以看出:
                1. 二叉树不存在度大于2 的结点
                2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

其实,二叉树在生活中也是很常见的,在一些自然奇观中,我们也可以感受到二叉树的存在:


2、两种特殊的二叉树

1. 满二叉树 : 一棵二叉树,如果 每层的结点数都达到最大值,则这棵二叉树就是满二叉树 。也就是说, 如果一棵二叉树的层数为K,且结点总数是2^{k}-1,则它就是满二叉树
2. 完全二叉树 : 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有 n个结点的二叉树,当且仅当其每一个结点都与深度为K 的满二叉树中编号从 0 n-1 的结点一一对应时称之为完全二叉树。
要注意的是满二叉树是一种特殊的完全二叉树。
满二叉树和完全二叉树具体长下图这样:

3、二叉树的性质

1. 若规定 根结点的层数为1 ,则一棵 非空二叉树的第i层上最多有 2^{i-1}(i>0)个结点
2. 若规定只有 根结点的二叉树的深度为1 ,则 深度为K的二叉树的最大结点数是 2^{k}-1(k>=0)
3. 对任何一棵二叉树 , 如果其 叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
4. 具有 n个结点的完全二叉树的深度k为 log_{2}(n+1)上取整
5. 对于具有 n个结点的完全二叉树 ,如果按照 从上至下从左至右的顺序对所有节点从0开始编号 ,则对于 序号为i的结点有
                 
                若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
                若2i+1<n,左孩子序号:2i+1,否则无左孩子
                若2i+2<n,右孩子序号:2i+2,否则无右孩子

4、二叉树的存储

二叉树的存储结构分为: 顺序存储 类似于链表的链式存储
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式 ,具体如下:
    // 孩子表示法
    class Node {
        int val; // 数据域
        Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
        Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
    }
    // 孩子双亲表示法
    class Node {
        int val; // 数据域
        Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
        Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
        Node parent; // 当前节点的根节点
    }

在这篇博客内容中,我们主要用孩子表示法来创建二叉树


5、二叉树的基本操作

(1)前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
public class BinaryTree {
    class TreeNode{
        public char val;
        public TreeNode right;
        public TreeNode left;

        public TreeNode(char val) {
            this.val = val;
        }
    }
    public TreeNode createTree() {
        TreeNode A = new TreeNode('A');
        TreeNode B = new TreeNode('B');
        TreeNode C = new TreeNode('C');
        TreeNode D = new TreeNode('D');
        TreeNode E = new TreeNode('E');
        TreeNode F = new TreeNode('F');
        TreeNode G = new TreeNode('G');
        TreeNode H = new TreeNode('H');
        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        C.left = F;
        C.right = G;
        E.right = H;
        return A;
    }
}
注意:上述代码并不是创建二叉树的方式
再看二叉树基本操作前,再回顾下二叉树的概念, 二叉树是:
        1. 空树
        2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。


(2)二叉树的遍历

1. 前中后序遍历
学习二叉树结构,最简单的方式就是遍历。所谓 遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1) 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱, 如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的 。如果 N 代表根节点, L 代表根节点的左子树,R 代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
NLR :前序遍历 (Preorder Traversal 亦称先序遍历 )—— 访问根结点 ---> 根的左子树 ---> 根的右子树。
LNR :中序遍历 (Inorder Traversal)—— 根的左子树 ---> 根节点 ---> 根的右子树。
LRN :后序遍历 (Postorder Traversal)—— 根的左子树 ---> 根的右子树 ---> 根节点。

 下面主要分析前序递归遍历,中序与后序图解类似。

 前序遍历代码:

    public void preOrder(TreeNode root){
        if (root == null){
            return;
        }
        System.out.println(root.val + ' ');
        preOrder(root.left);
        preOrder(root.right);
    }

中序遍历代码:

    public void inOrder(TreeNode root){
        if (root== null){
            return;
        }
        inOrder(root.left);
        System.out.println(root.val + ' ');
        inOrder(root.right);
    }

后序遍历代码:

 public void postOrder(TreeNode root){
    if (root == null){
        return;
    }
    postOrder(root.right);
    postOrder(root.left);
    System.out.println(root.val + ' ');
    }
前序遍历结果: 1 2 3 4 5 6
中序遍历结果: 3 2 1 5 4 6
后序遍历结果: 3 1 5 6 4 1

 2、层序遍历

层序遍历 :除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1 ,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第 2 层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

在进行层序遍历的时候,我们可以借助之前学过的队列来完成这个算法,大致思路如下:

我们先判断头指针root是否为null,如果不是null则将其进入队列,然后将该元素弹出并打印,命名为top,如果top存在左右子树,那么将其左右子树依次入列,当队列中元素不为空时一直重复上述操作,当队列为空,则层序遍历完成。

 层序遍历代码:

public void leaveOrder(TreeNode root){
        Queue<TreeNode> queue = new LinkedList<>();
        if (root != null){
            queue.offer(root);
        }
        while (!queue.isEmpty()){
            TreeNode top = queue.poll();
            System.out.println(top.val + " ");
            if (top.left != null){
                queue.offer(top.left);
            }
            if (top.right != null){
                queue.offer(top.right);
            }
        }
    }

二叉树的其它具体操作都与二叉树的遍历息息相关,因此我们在学习其它操作之前,需要将二叉树的遍历融会贯通。

本期博客到此结束。

/* * 基于向量实现的完全二叉树 */ package dsa; public class ComplBinTree_Vector extends BinTree_LinkedList implements ComplBinTree { private Vector T;//向量 //构造方法:默认的空树 public ComplBinTree_Vector() { T = new Vector_ExtArray(); root = null; } //构造方法:按照给定的节点序列,批量式建立完全二叉树 public ComplBinTree_Vector(Sequence s) { this(); if (null !=s) while (!s.isEmpty()) addLast(s.removeFirst()); } /*---------- BinaryTree接口中各方法的实现 ----------*/ //返回树根(重写) public BinTreePosition getRoot() { return T.isEmpty() ? null : posOfNode(0); } //判断是否树空(重写) public boolean isEmpty() { return T.isEmpty(); } //返回树的规模(重写) public int getSize() { return T.getSize(); } //返回树(根)的高度(重写) public int getHeight() {return isEmpty() ? -1 : getRoot().getHeight(); } /*---------- ComplBinTree接口中各方法的实现 ----------*/ //生成并返回一个存放e的外部节点,该节点成为新的末节点 public BinTreePosition addLast(Object e) { BinTreePosition node = new ComplBinTreeNode_Rank(T, e); root = (BinTreePosition) T.getAtRank(0); return node; } //删除末节点,并返回其中存放的内容 public Object delLast() { if (isEmpty()) return null;//若树(堆)已空,无法删除 if (1 == getSize()) root = null;//若删除最后一个节点,则树空 return T.removeAtRank(T.getSize()-1); } //返回按照层次遍历编号为i的节点的位置,0 <= i < size() public BinTreePosition posOfNode(int i) { return (BinTreePosition)T.getAtRank(i); } }
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值