1.31复习算法(欧拉函数,质因数)

筛质数(求1~n里的质数个数)

朴素法

//st记录该数是否被筛掉
void get_primes(int n){
    for(int i=2;i<=n;i++){
        if(!st[i]){
            primes[cnt++]=i;
        }
        //筛掉i的倍数
        for(int j=i+i;j<=n;j+=i)st[j]=true;
    }
}

埃式筛法(只筛前面数的倍数)

当一个数不是质数时,不用筛它的倍数,不然就重复筛了

//只筛选质数的倍数
void get_primes(int n){
    for(int i=2;i<=n;i++){
        if(!st[u]){
            primes[cnt++]=i;
            for(int j=i+i;j<=n;j+=i)st[j]=true;
        }
    }
}

实际时间复杂度约等于o(logn)

线性筛法(只用它的最小质因子的倍数筛除它)

合数:除了能被1和它本身整除,还能被其他的正整数整除,那么这样的数叫做合数。

int get_prime(int n){
    for(int i=2;i<=n;i++){
        if(!st[i])primes[++cnt]=i;


        //用已知的质数当倍数,更新i的倍数pj*i
        for(int j=1;primes[j]<=n/i;j++){
            //先把质因数更新了,且pj*i为true是被最小质因数更新的
            st[primes[j]*i]=true;
            //当i能被一个质数(肯定是最小质因数,因为从小到大遍历)整除时,就不继续更新了,因为质因数再增大,后面的质因数pj不是更新数的最小质因数了
            //当i还不能被当前pj质数整除,说明i的最小质因数比pj大,所以继续更新的合数的最小质因子一定是pj
            if(i%primes[j]==0)break;
            //条件满足时,pj是i的最小质因子
            //条件不满足时,pj是pj*i的最小质因子(因为质数表还没有遍历到i的最小质因子)
        }
    }
}

i遍历2-n,质数放到质数表里,用更新(i的倍数)改为更新(满足(i的倍数里)最小质因子是(当前质数表里的元素)的数,如果当前质数表里的数还没有遇到i的最小质因子,那么就用pj更新合数(因为i里的最小质因子还没遍历到and增加的倍数是质数表里的数)--->pj是当前更新的合数的最小质因子

这样不会重复筛出同一个数,当n>2^{7},时间复杂度为o(n),比埃及筛快一倍。

欧拉函数(定义法,求某个数的欧拉函数)

证明欧拉函数计算个数(容斥原理)

主要是把所有的质因子求出来,根号(n)

//用公式和定义直接求欧拉函数
//1.先把所有的质因数找到

res=a;
for(int i=2;i<=a/i;i++){
    if(a%i==0){
        res=res/i*(i-1);
        while(a%i==0)a/=i;
    }
}
if(a>0)res=res/a*(a-1);//公式里需要的是质因子,所以包括它本身

cout<<res;

欧拉函数的作用

线性筛法求(1-n)欧拉函数

借(线性筛法求1-n的质数)的过程中求每个数的欧拉函数

质数i的欧拉函数等于i-1

LL get_eulers(int n){
    phi[1]=1;
    for(int i=2;i<=n;i++){
        if(!st[i])
        {
            primes[cnt++]=i;
            phi[i]=i-1;
        }
        for(int j=0;primes[j]<=n/i;j++){
            //最小质因数还没出现
            st[primes[j]*i]=true;

            if(i%primes[j]==0){
            //pj是i的最小质因子
                phi[primes[j]*i]=phi[i]*primes[j];
                break;
            }
            phi[primes[j]*i]=phi[i]*(primes[j]-1);
        }
    }
    LL res=0;
    for(int i=1;i<=n;i++)res+=phi[i];
    return res;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值