筛质数(求1~n里的质数个数)
朴素法
//st记录该数是否被筛掉
void get_primes(int n){
for(int i=2;i<=n;i++){
if(!st[i]){
primes[cnt++]=i;
}
//筛掉i的倍数
for(int j=i+i;j<=n;j+=i)st[j]=true;
}
}
埃式筛法(只筛前面数的倍数)
当一个数不是质数时,不用筛它的倍数,不然就重复筛了
//只筛选质数的倍数
void get_primes(int n){
for(int i=2;i<=n;i++){
if(!st[u]){
primes[cnt++]=i;
for(int j=i+i;j<=n;j+=i)st[j]=true;
}
}
}
实际时间复杂度约等于o(logn)
线性筛法(只用它的最小质因子的倍数筛除它)
合数:除了能被1和它本身整除,还能被其他的正整数整除,那么这样的数叫做合数。
int get_prime(int n){
for(int i=2;i<=n;i++){
if(!st[i])primes[++cnt]=i;
//用已知的质数当倍数,更新i的倍数pj*i
for(int j=1;primes[j]<=n/i;j++){
//先把质因数更新了,且pj*i为true是被最小质因数更新的
st[primes[j]*i]=true;
//当i能被一个质数(肯定是最小质因数,因为从小到大遍历)整除时,就不继续更新了,因为质因数再增大,后面的质因数pj不是更新数的最小质因数了
//当i还不能被当前pj质数整除,说明i的最小质因数比pj大,所以继续更新的合数的最小质因子一定是pj
if(i%primes[j]==0)break;
//条件满足时,pj是i的最小质因子
//条件不满足时,pj是pj*i的最小质因子(因为质数表还没有遍历到i的最小质因子)
}
}
}
i遍历2-n,质数放到质数表里,用更新(i的倍数)改为更新(满足(i的倍数里)最小质因子是(当前质数表里的元素)的数,如果当前质数表里的数还没有遇到i的最小质因子,那么就用pj更新合数(因为i里的最小质因子还没遍历到and增加的倍数是质数表里的数)--->pj是当前更新的合数的最小质因子
这样不会重复筛出同一个数,当n>,时间复杂度为o(n),比埃及筛快一倍。
欧拉函数(定义法,求某个数的欧拉函数)
证明欧拉函数计算个数(容斥原理)
主要是把所有的质因子求出来,根号(n)
//用公式和定义直接求欧拉函数
//1.先把所有的质因数找到
res=a;
for(int i=2;i<=a/i;i++){
if(a%i==0){
res=res/i*(i-1);
while(a%i==0)a/=i;
}
}
if(a>0)res=res/a*(a-1);//公式里需要的是质因子,所以包括它本身
cout<<res;
欧拉函数的作用
线性筛法求(1-n)欧拉函数
借(线性筛法求1-n的质数)的过程中求每个数的欧拉函数
质数i的欧拉函数等于i-1
LL get_eulers(int n){
phi[1]=1;
for(int i=2;i<=n;i++){
if(!st[i])
{
primes[cnt++]=i;
phi[i]=i-1;
}
for(int j=0;primes[j]<=n/i;j++){
//最小质因数还没出现
st[primes[j]*i]=true;
if(i%primes[j]==0){
//pj是i的最小质因子
phi[primes[j]*i]=phi[i]*primes[j];
break;
}
phi[primes[j]*i]=phi[i]*(primes[j]-1);
}
}
LL res=0;
for(int i=1;i<=n;i++)res+=phi[i];
return res;
}