题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1003
题目大意:一段给出的数列(有正有负) ,求使得和最大的子序列
原题英文版
输入:T(测试样例数目)N(单个测试样例的数据个数)
接下来N行为测试各个样例的输入
输出:
Case 1:
输出最大子序列的和,最大子序列的开始位置,结束位置
Case 2:。。。。
解题思路;直接暴力搜索,n^2当=100000必定超时,
方法1;决定采用动态规划,此处又名在线处理(O(N))
两个关键点:
假设在此时最大子序列的起始位置还是1时;
当前面n-1数和加上第n个数>max,则更新最长子序列的节点(首尾都换,实际上第一次sum没有小于0的情况只需要换尾部位置,建议结合第二个关键点一起看)
当前面n-1数和加上第n个数<0,则说明包含第n+1个数的子序列不需要前n个数(都小于0要你干什么,sum重置为0,将此时第n+1个数的位置记下来,后面发现更大的子序列时,这个为头位置,当后续sum又大于max,此时的最长子序列,应该从这里开始了)
如果觉得讲的太乱了,直接看代码吧。
#include <iostream>
using namespace std;
int main()
{
int t;
cin >> t;
int n, a[100005] = { 0 },first,end,sum,max,flag;
for (int k = 1; k <= t; k++)
{
cin >> n;
sum = 0;
max = -99999999;
first = 0,end=0,flag=0;//flag用来标识最长子序列的起始位置,初始化为0,
//如果没有sum<0的情况,更新最长子序列的首尾位置时,对起始位置没有影响
for (int j = 0; j < n; j++)
{
scanf("%d", &a[j]);
}
for (int i = 0; i < n; i++)
{
sum = sum + a[i];
if (sum > max) //如果找到了更大的子序列,需要更换记录的首尾位置
{
first = flag;
end = i;
max = sum;
}
if (sum < 0) //出现sum<0的情况,子序列中断,下个位置开始的子序列有可能会成为最大子序列
//所以要把这个位置用flag记下,以便下次更新使用
{
sum = 0;
flag =i+1 ;
}
}
printf("Case %d:\n", k);
printf("%d %d %d", max, first + 1, end + 1);
printf("\n\n");
}
return 0;
}
方法2:分而治之思想(mooc浙江大学数据结构第一节算法3分治思想),
课件代码:(只给了最大值,没给首尾位置)
int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
return A > B ? A > C ? A : C : B > C ? B : C;
}
int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;
if( left == right ) { /* 递归的终止条件,子列只有1个数字 */
if( List[left] > 0 ) return List[left];
else return 0;
}
/* 下面是"分"的过程 */
center = ( left + right ) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和 */
MaxLeftSum = DivideAndConquer( List, left, center );
MaxRightSum = DivideAndConquer( List, center+1, right );
/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
LeftBorderSum += List[i];
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */
MaxRightBorderSum = 0; RightBorderSum = 0;
for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
RightBorderSum += List[i];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */
/* 下面返回"治"的结果 */
return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer( List, 0, N-1 );
}
我理解后的完整代码
解决递归输出位置问题我用了结构体pos同时存储·值和位置(太聪明了)
解决多个解时输出最早的解(在Max3时,是左边的最大值结构为temp,除非右边值和过中线比他大才会替换)
上代码
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
struct pos//引入结构体,存储最大值的同时记下位置
{
int value = 0;
int posl = 0;
int posr = 0;
};
pos Max3(pos a, pos b, pos c)//求三数最大
{
pos temp=a;
if (c.value > temp.value)
temp = c;
if (temp.value < b.value)
temp = b;
return temp;
}
pos findmax(int* a, int left,int right)//递归
{
pos P;
if (left == right)//不可二分时只有一个值,即为最大,结束递归
{
P.value = a[left];
P.posl = left;
P.posr = left;
return P;
}
pos maxleft, maxright;
int mid = (left + right) / 2;
maxleft = findmax(a, left, mid);//二分递归
maxright = findmax(a, mid + 1, right);//二分递归
int maxmidleft=-99999999, midleft=0, maxmidright=-99999999, midright=0;
int mi=0, mj=0;
for (int i = mid; i >= left; i--)//从中线往左边找找最大和
{
midleft += a[i];
if (maxmidleft <= midleft)
{
maxmidleft = midleft;
mi = i;
}
}
for (int j = mid + 1; j <= right; j++)//从右边找
{
midright += a[j];
if (maxmidright < midright)
{
maxmidright = midright;
mj = j;
}
}
pos M;
M.value = (maxmidleft + maxmidright);
M.posl = mi;
M.posr = mj;
return Max3(maxleft, maxright, M);//返回右二分区的最大值,左二分区最大值,经过中线最大值的中的三数最大的结构体
}
int main()
{
int k;
scanf("%d", &k);
int a[100005];
for (int i = 0; i < k; i++)
{
scanf("%d", &a[i]);
}
pos ans= findmax(a, 0,k-1);
cout << ans.value << " " << ans.posl << ' ' << ans.posr;
return 0;
}
浙大的题对输出有点改动
//注意浙大的题改了,不是输出位置,而是输出该位置的值,而且对全队列都为负数只要输出sum=0队列的首尾值
if (ans.value >= 0)
cout << ans.value << " " << a[ans.posl] << ' ' << a[ans.posr];
else
cout <<0<<' '<< a[0] << " " << a[k - 1];
return 0;