Max Sum(HDU1003)求最大子序列和(dp)题解

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1003

题目大意:一段给出的数列(有正有负) ,求使得和最大的子序列

原题英文版

输入:T(测试样例数目)N(单个测试样例的数据个数)

接下来N行为测试各个样例的输入

输出:

Case 1: 

输出最大子序列的和,最大子序列的开始位置,结束位置

Case 2:。。。。

 解题思路;直接暴力搜索,n^2当=100000必定超时,

方法1;决定采用动态规划,此处又名在线处理(O(N))

两个关键点:

假设在此时最大子序列的起始位置还是1时;

当前面n-1数和加上第n个数>max,则更新最长子序列的节点(首尾都换,实际上第一次sum没有小于0的情况只需要换尾部位置,建议结合第二个关键点一起看)

当前面n-1数和加上第n个数<0,则说明包含第n+1个数的子序列不需要前n个数(都小于0要你干什么,sum重置为0,将此时第n+1个数的位置记下来,后面发现更大的子序列时,这个为头位置,当后续sum又大于max,此时的最长子序列,应该从这里开始了)

如果觉得讲的太乱了,直接看代码吧。

#include <iostream>
using  namespace std;
int main()
{
	int t;
	cin >> t;
	int n, a[100005] = { 0 },first,end,sum,max,flag;
	for (int k = 1; k <= t; k++)
	{
		cin >> n;
		sum = 0;
		max = -99999999;
		first = 0,end=0,flag=0;//flag用来标识最长子序列的起始位置,初始化为0,
								//如果没有sum<0的情况,更新最长子序列的首尾位置时,对起始位置没有影响
		for (int j = 0; j < n; j++)
		{
			scanf("%d", &a[j]);
		}
		for (int i = 0; i < n; i++)
		{
			sum = sum + a[i];
			if (sum > max)     //如果找到了更大的子序列,需要更换记录的首尾位置
			{
				first = flag;
				end = i;
				max = sum;
				
			}
			if (sum < 0)       //出现sum<0的情况,子序列中断,下个位置开始的子序列有可能会成为最大子序列
								//所以要把这个位置用flag记下,以便下次更新使用
			{
				sum = 0;
				flag =i+1 ;
			}
		}
		printf("Case %d:\n", k);
		
		printf("%d %d %d", max, first + 1, end + 1);

		printf("\n\n");
	}
	return 0;
}

方法2:分而治之思想(mooc浙江大学数据结构第一节算法3分治思想),

课件代码:(只给了最大值,没给首尾位置)

int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
    return A > B ? A > C ? A : C : B > C ? B : C;
}

int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
    int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
    int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/

    int LeftBorderSum, RightBorderSum;
    int center, i;

    if( left == right )  { /* 递归的终止条件,子列只有1个数字 */
        if( List[left] > 0 )  return List[left];
        else return 0;
    }

    /* 下面是"分"的过程 */
    center = ( left + right ) / 2; /* 找到中分点 */
    /* 递归求得两边子列的最大和 */
    MaxLeftSum = DivideAndConquer( List, left, center );
    MaxRightSum = DivideAndConquer( List, center+1, right );

    /* 下面求跨分界线的最大子列和 */
    MaxLeftBorderSum = 0; LeftBorderSum = 0;
    for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
        LeftBorderSum += List[i];
        if( LeftBorderSum > MaxLeftBorderSum )
            MaxLeftBorderSum = LeftBorderSum;
    } /* 左边扫描结束 */

    MaxRightBorderSum = 0; RightBorderSum = 0;
    for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
        RightBorderSum += List[i];
        if( RightBorderSum > MaxRightBorderSum )
            MaxRightBorderSum = RightBorderSum;
    } /* 右边扫描结束 */

    /* 下面返回"治"的结果 */
    return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}

int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
    return DivideAndConquer( List, 0, N-1 );
}

我理解后的完整代码

解决递归输出位置问题我用了结构体pos同时存储·值和位置(太聪明了)

解决多个解时输出最早的解(在Max3时,是左边的最大值结构为temp,除非右边值和过中线比他大才会替换)

上代码

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
struct pos//引入结构体,存储最大值的同时记下位置
{
	int value = 0;
	int posl = 0;
	int posr = 0;
};

pos Max3(pos a, pos b, pos c)//求三数最大
{
	pos temp=a;
	if (c.value > temp.value)
		temp = c;
	if (temp.value < b.value)
		temp = b;
	return temp;
}
pos  findmax(int* a, int left,int right)//递归
{
	pos P;
	if (left == right)//不可二分时只有一个值,即为最大,结束递归
	{
		P.value = a[left];
		P.posl = left;
		P.posr = left;
		return P;
	 }
	 pos maxleft, maxright;
	 int mid = (left + right) / 2;
	 maxleft = findmax(a, left, mid);//二分递归
	 maxright = findmax(a, mid + 1, right);//二分递归
	 int maxmidleft=-99999999, midleft=0, maxmidright=-99999999, midright=0;
	 int mi=0, mj=0;
	 for (int i = mid; i >= left; i--)//从中线往左边找找最大和
	 {
		 midleft += a[i];
		 if (maxmidleft <= midleft)
		 {
			 maxmidleft = midleft;
			 mi = i;
		 }
	 }
	 for (int j = mid + 1; j <= right; j++)//从右边找
	 {
		 midright += a[j];
		 if (maxmidright < midright)
		 {
			 maxmidright = midright;
			 mj = j;
		 }
	 }
	 pos M;
	 M.value = (maxmidleft + maxmidright);
	 M.posl = mi;
	 M.posr = mj;
	 return Max3(maxleft, maxright, M);//返回右二分区的最大值,左二分区最大值,经过中线最大值的中的三数最大的结构体


}
int main()
{
	int k;
	scanf("%d", &k);
	int a[100005];
		for (int i = 0; i < k; i++)
		{
			scanf("%d", &a[i]);
		}
		pos ans= findmax(a, 0,k-1);
		cout << ans.value << " " << ans.posl << ' ' << ans.posr;
		return 0;

}

浙大的题对输出有点改动

//注意浙大的题改了,不是输出位置,而是输出该位置的值,而且对全队列都为负数只要输出sum=0队列的首尾值
		if (ans.value >= 0)
			cout << ans.value << " " << a[ans.posl] << ' ' << a[ans.posr];
		else
			cout <<0<<' '<< a[0] << " " << a[k - 1];
		return 0;

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要我们将这些木棒割成一些给定长度,且要每种长度的木棒的数量都是一样的,最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值