前缀和(算法题)

在这里插入图片描述
具体代码如下(有详细注释和思想):

#include <bits/stdc++.h> 
using namespace std;    

int n, m, l, r;         // n:数组长度,m:查询次数,l和r:每次查询的区间左右端点
int a[100010], s[100010]; // a数组存储原始数据,s数组为前缀和数组


/*
代码思路解析:
1. 前缀和预处理:
   - 构建前缀和数组s,使得s[i]表示数组a前i个元素的和。
   - 通过递推公式s[i] = s[i-1] + a[i],时间复杂度O(n)。
   
2. 查询优化:
   - 每次查询区间和[l, r]时,直接计算s[r] - s[l-1],时间复杂度O(1)。
   - 避免了暴力遍历区间求和导致的O(n)时间复杂度,显著提升效率。
   
关键点:
- 数组下标从1开始,使得s[0] = 0,处理区间左端点l=1时不会越界。
- 前缀和思想将区间和查询的时间复杂度从O(m*n)降低到O(n + m),适用于大规模查询场景。
*/


int main() {
    // 输入数组长度n和查询次数m
    cin >> n >> m;
    
    // 读取数组a的元素,注意下标从1开始(方便前缀和计算)
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
    }
    
    // 计算前缀和数组s,s[i]表示a[1]到a[i]的和
    // 例如:s[3] = a[1] + a[2] + a[3]
    // 通过递推公式s[i] = s[i-1] + a[i]高效计算
    for (int i = 1; i <= n; i++) {
        s[i] = s[i - 1] + a[i];
    }
    
    // 处理每个查询
    while (m--) {
        cin >> l >> r;  // 读取当前查询的区间[l, r]
        
        // 利用前缀和快速计算区间和:s[r] - s[l-1]
        // 例如:区间[2,4]的和 = s[4] - s[1] = (a1+a2+a3+a4) - (a1) = a2+a3+a4
        cout << s[r] - s[l - 1] << endl;
    }
    
    return 0;
}

此篇文章参考了acwing算法基础课。

### 蓝桥杯竞赛中前缀和与差分算法的应用 #### 一维前缀和计算方法 在一维数组 `a` 中,前缀和是指从数组的第一个元素到当前元素的所有元素之和。通过构建一个新的数组 `sum` 来存储每一项的累积求和结果,即对于任意位置 `i` 的前缀和可以通过如下方式获得: \[ \text{sum}[i] = a[0]+a[1]+\cdots+a[i] \] 这使得查询区间 `[l, r]` 内所有元素总和变得非常高效,只需执行一次减法操作即可得到结果。 ```cpp // 计算一维前缀和并处理区间查询 vector<int> sum(n + 1); for (int i = 1; i <= n; ++i) { sum[i] = sum[i - 1] + a[i]; } // 查询[l,r]区间的和 int query(int l, int r){ return sum[r]-sum[l-1]; } ``` #### 二维前缀和计算方法 当涉及到矩阵时,则需要扩展至二维空间来表示数据结构。此时同样可以利用类似的累加策略建立四边形区域内的快速访问机制[^2]。 ```cpp // 初始化二维前缀和 for (int i = 1; i <= N; ++i) for (int j = 1; j <= M; ++j) prefixSum[i][j] = matrix[i][j] + prefixSum[i - 1][j] + prefixSum[i][j - 1] - prefixSum[i - 1][j - 1]; // 获取子矩形(x1,y1)->(x2,y2)内数值总量 int getRectangleSum(int x1,int y1,int x2,int y2){ return prefixSum[x2][y2]- prefixSum[x1-1][y2]- prefixSum[x2][y1-1]+ prefixSum[x1-1][y1-1]; } ``` #### 差分定义及其应用场景 差分是一种用于记录相邻两项之间差异的技术手段,在某些情况下能够简化问题复杂度。比如要频繁修改序列某一段范围内的值或是统计特定条件下满足要求的数量变化情况等场景下尤为适用。 ##### 修改操作优化 假设有一个长度为 \(n\) 的初始全零数组 `diff[]`, 若要使闭合区间\([L,R]\)上的每个元素都增加\(val\),则只需要做两次更新: - 将 `diff[L] += val`; - 如果 R+1 不越界的话再令 `diff[R+1] -= val`. 最后遍历一遍整个 diff 数组就可以恢复出最终的结果状态了. ```cpp void incrementRange(vector<long long>& nums, vector<pair<int, int>>& queries) { const size_t n = nums.size(); // 创建一个大小相同的辅助向量来进行增量运算. vector<long long> increments(n); for(auto& q : queries){ auto [start,end]=q; // 对应于上述提到的操作逻辑 if(start>=0 && start<n) increments[start]+=1; if(end+1>=0&&end+1<n) increments[end+1]-=1; } // 构建实际的变化趋势图谱 partial_sum(begin(increments), end(increments), begin(nums)); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值