问题描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 10 级的台阶总共有多少种跳法。
题主是算法蒟蒻,题解有啥问题一定和我说哦(宇宙安全声明哈哈哈)
思路描述:
一开始感觉就是一个很简单的递归,写完代码后放到leecode上去跑,显示超时了
解决代码(超时)
#include <iostream>
#include <unordered_map> //哈希表的头文件
using namespace std;
//需要注意的是没有使用哈希表的时候时间复杂度很高,所以数字一大就跑不了
unordered_map<int, int> temp; // 建立一个哈希表
int numway(int n) // 这里的n指的是到达第n个台阶有几种不同的跳法
{
if (n == 1)
return 1;
if (n == 2)
return 2;
else
return numway(n - 1) + numway(n - 2); // 很明显的一个递归
}
int main()
{
int x;
cin>>x;
int tmp=numway(x);
cout<<tmp;
return 0;
}
原因代码段已经叙述。
这里直接放可以正确运行的代码
解决办法一
#include <iostream>
#include <unordered_map> //哈希表的头文件
using namespace std;
//需要注意的是没有使用哈希表的时候时间复杂度很高,所以数字一大就跑不了
unordered_map<int, int> temp; // 建立一个哈希表
int numway(int n) // 这里的n指的是到达第n个台阶有几种不同的跳法
{
if (n == 1)
return 1;
if (n == 2)
return 2;
//所以说我们要想降低时间复杂度就要进行减枝操作,具体的操作就是存储好已经计算过的数值
if(temp.count(n))
//temp 是一个哈希表(unordered_map)对象,
//使用 count 成员函数来检查键 n 是否存在于哈希表中。
//如果存在,你使用方括号运算符 [] 来访问并返回对应的值。
//这种用法是正确的,count 函数返回一个整数值,表示键在哈希表中的出现次数。
//对于哈希表来说,由于每个键在哈希表中只能出现一次,
//因此 count 的返回值要么是 0(不存在),要么是 1(存在)。
return temp[n];
else{
temp[n]=(numway(n-1)+numway(n-2))%1000000007;
return temp[n];
}
//return numway(n - 1) + numway(n - 2); // 很明显的一个递归
}
int main()
{
int x;
cin>>x;
int tmp=numway(x);
cout<<tmp;
return 0;
}
解决办法二
这个题可以直接枚举找规律(其实这里面也包含了动态规划的思想)
1,2,3,5,8,13......后一个等于前两个之和
class Solution {
public:
int climbStairs(int n) {
int p = 0, q = 0, r = 1;
for (int i = 1; i <= n; ++i) {
p = q;
q = r;
r = p + q;
}
return r;
}
};