青蛙跳阶问题(思路和题解)

问题描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 10 级的台阶总共有多少种跳法。

题主是算法蒟蒻,题解有啥问题一定和我说哦(宇宙安全声明哈哈哈)

思路描述:

一开始感觉就是一个很简单的递归,写完代码后放到leecode上去跑,显示超时了

解决代码(超时)

#include <iostream>
#include <unordered_map> //哈希表的头文件
using namespace std;
//需要注意的是没有使用哈希表的时候时间复杂度很高,所以数字一大就跑不了
unordered_map<int, int> temp; // 建立一个哈希表
int numway(int n)			  // 这里的n指的是到达第n个台阶有几种不同的跳法
{
	if (n == 1)
		return 1;
	if (n == 2)
		return 2;
	else
		return numway(n - 1) + numway(n - 2); // 很明显的一个递归
}
int main()
{
    int x;
	cin>>x;
	int tmp=numway(x);
	cout<<tmp;
	return 0;
}

原因代码段已经叙述。

这里直接放可以正确运行的代码

解决办法一

#include <iostream>
#include <unordered_map> //哈希表的头文件
using namespace std;
//需要注意的是没有使用哈希表的时候时间复杂度很高,所以数字一大就跑不了
unordered_map<int, int> temp; // 建立一个哈希表
int numway(int n)			  // 这里的n指的是到达第n个台阶有几种不同的跳法
{
	if (n == 1)
		return 1;
	if (n == 2) 
		return 2;
	//所以说我们要想降低时间复杂度就要进行减枝操作,具体的操作就是存储好已经计算过的数值
	if(temp.count(n))
	//temp 是一个哈希表(unordered_map)对象,
	//使用 count 成员函数来检查键 n 是否存在于哈希表中。
	//如果存在,你使用方括号运算符 [] 来访问并返回对应的值。
   //这种用法是正确的,count 函数返回一个整数值,表示键在哈希表中的出现次数。
   //对于哈希表来说,由于每个键在哈希表中只能出现一次,
   //因此 count 的返回值要么是 0(不存在),要么是 1(存在)。
	    return temp[n];
	else{
		temp[n]=(numway(n-1)+numway(n-2))%1000000007;
		return temp[n];

	}
		//return numway(n - 1) + numway(n - 2); // 很明显的一个递归
}
int main()
{
    int x;
	cin>>x;
	int tmp=numway(x);
	cout<<tmp;
	return 0;
}

解决办法二

这个题可以直接枚举找规律(其实这里面也包含了动态规划的思想)

1,2,3,5,8,13......后一个等于前两个之和

class Solution {
public:
    int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值