动态规划问题

我们先来看一道题:

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

法一:很明显我们可以使用递归的思想来进行解答

int climbStairs(int n) {
    if(n<=2)
    return n;
    return climbStairs(n-1)+climbStairs(n-2);
    
    //一点也没有优化,竟然还过了,哈哈
}

但是,我们之后一定会遇到,程序执行超时的问题,纯粹的递归可能会导致大量的重复计算,从而导致效率较低。这是因为在计算climbStairs(n)时,它会递归调用climbStairs(n-1)climbStairs(n-2),而这两者又会重复计算一些相同的子问题。

所以,我们引入动态规划的概念:

解法二:动态规划

int climbStairs(int n) {
    if (n <= 2) {
        return n;
    }

    int dp[n+1];
    dp[1] = 1;
    dp[2] = 2;

    for (int i = 3; i <= n; i++) {
        dp[i] = dp[i-1] + dp[i-2];
    }

    return dp[n];
}

分析:

当解决一个问题时,如果问题可以被拆解成更小的子问题,而且这些子问题之间存在重叠的子问题,那么就可以考虑使用动态规划。动态规划是一种自底向上的问题求解方法,其基本思想是将问题拆解成更小的子问题,并保存子问题的解,避免重复计算。

在爬楼梯的问题中,我们需要到达第n阶楼梯,每一步可以选择爬1个台阶或2个台阶。我们可以定义一个数组dp,其中dp[i]表示到达第i阶楼梯的方法数。初始条件是dp[1] = 1dp[2] = 2,因为爬到第1阶只有一种方法,爬到第2阶有两种方法。

然后,我们使用循环从第3阶开始计算dp[i],直到第n阶。每一步的计算都是基于前两步的结果,因为你只能爬1个台阶或2个台阶。通过这样的迭代过程,我们逐步构建了解决问题的整体思路。

动态规划的优点在于它避免了重复计算,通过存储中间结果来减少计算量,提高了算法的效率。在这个例子中,通过使用动态规划,我们实现了一个线性时间复杂度的解法,大大提高了计算效率。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值