我们先来看一道题:
假设你正在爬楼梯。需要
n
阶你才能到达楼顶。每次你可以爬
1
或2
个台阶。你有多少种不同的方法可以爬到楼顶呢?示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶提示:
1 <= n <= 45
解法一:很明显我们可以使用递归的思想来进行解答
int climbStairs(int n) {
if(n<=2)
return n;
return climbStairs(n-1)+climbStairs(n-2);
//一点也没有优化,竟然还过了,哈哈
}
但是,我们之后一定会遇到,程序执行超时的问题,纯粹的递归可能会导致大量的重复计算,从而导致效率较低。这是因为在计算climbStairs(n)
时,它会递归调用climbStairs(n-1)
和climbStairs(n-2)
,而这两者又会重复计算一些相同的子问题。
所以,我们引入动态规划的概念:
解法二:动态规划
int climbStairs(int n) {
if (n <= 2) {
return n;
}
int dp[n+1];
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
分析:
当解决一个问题时,如果问题可以被拆解成更小的子问题,而且这些子问题之间存在重叠的子问题,那么就可以考虑使用动态规划。动态规划是一种自底向上的问题求解方法,其基本思想是将问题拆解成更小的子问题,并保存子问题的解,避免重复计算。
在爬楼梯的问题中,我们需要到达第n阶楼梯,每一步可以选择爬1个台阶或2个台阶。我们可以定义一个数组dp
,其中dp[i]
表示到达第i阶楼梯的方法数。初始条件是dp[1] = 1
和dp[2] = 2
,因为爬到第1阶只有一种方法,爬到第2阶有两种方法。
然后,我们使用循环从第3阶开始计算dp[i]
,直到第n阶。每一步的计算都是基于前两步的结果,因为你只能爬1个台阶或2个台阶。通过这样的迭代过程,我们逐步构建了解决问题的整体思路。
动态规划的优点在于它避免了重复计算,通过存储中间结果来减少计算量,提高了算法的效率。在这个例子中,通过使用动态规划,我们实现了一个线性时间复杂度的解法,大大提高了计算效率。