自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 算法设计与分析第五章作业(最小重量机器设计问题)

设x[i]表示第i个部件选择了第几个供应商,设cc表示当前的总重量,设cv表示当前的价值,如果满足限界函数的话,则为cc+=w[t][i];假设有n个部件,m个供应商,那么解空间可以为{1,1,1...1}、{2,2,2....2}、{3,3,3..3}....、{m,m,m...m}....也就是对于每个部件来说都可以从1-m之间选择。由题目要求可知,重量必须为最小,则可以设置一个bestc表示重量最小值,如果在当前节点下cc+w[t][i]

2023-12-06 23:28:27 439 1

原创 【PyTorch深度学习与实践】第五讲用PyTorch实现线性回归

3.loss得出的应该是标量,但是如下图,我们一开始计算得出的loss是一个多维的矩阵,在此我们应该做的就是对求出的多维loss进行求和,然后我们可以自己选择是否对其进行求均值。1.w和b 的维度得根据x、z、y的维度来确定,比如说已经知道x的维度是4*1,z的维度是3*1,那么根据线性代数的知识可以知道w的维度应该是3*4,b的维度应该是3*1才能与x相乘得到z的维度。(4)forward函数是在覆盖__call__函数,进行实例化,linear(x)实现的是x*w+b,至于是w还是w得转置无所谓。

2023-11-18 19:42:01 62 1

原创 【PyTorch深度学习实践】第四讲反向传播

PyTorch深度学习实践第三讲反向传播

2023-11-04 22:47:36 68 1

原创 【PyTorch深度学习与实践】第三讲梯度下降算法

但是在非凸函数中,可能在找到其中一个局部最优点的时候就停止迭代了,不过在深度学习实践中我们发现,这样的非凸函数还是很少的,克服这一点相对简单,我们更加担心的是出现“鞍点”。在我们的训练集中,一般都会呈现收敛趋势,但不可避免中间会有些波动(如红色线),这时我们通常采用指数加权均值的方法:Ci' = βci + (1-β)Ci-1'来让曲线变平滑。如果区间过大,数据量过大,可能就无法跑动了,此时可能想到用分治法进行小区间划分,但是分治法比较适合曲线光滑的凸函数,如果是不规则的曲线可能就会错过最优解。

2023-11-01 13:32:46 64

原创 【PyTorch深度学习实践】第二讲线性模型

一般的线性模型为:y=w*x+b,我们将线性模型进行简化,把截距去掉,在上例中,对于给出的(x,y)值的分布,我们要思考找到一个w来拟合(x,y)的分布。训练集应该尽量符合现实情况,如果训练集模拟的过好,噪声太大,即过拟合,我们希望的是泛化能力。可以利用穷举法计算在需要求的实数区间内所有的取值,就可以得到一个最低点,最低点即是最优解。我们知道x 和y的值,叫做监督学习,监督学习之后还得经过测试(测试集)先有个数据集,经过我们的算法之后,再有个输入经过算法便可得到预测结果。2、进行评估,找到评估模型(损失)

2023-10-31 00:06:44 69 1

原创 华为代码规范小记(c)

1、标识符的命名要清晰、明确,使用完整的单词或者大家可以理解的缩写,方便理解和避免产生误解。2、除了常见的通用缩写之外,其他单词不得缩写,也不能使用中文拼音、3、命名要与所在项目组保持一样的风格。4、使用正确的反义词来命名具有互斥意义的变量或者相反动作的函数。5、尽量避免名字中出现编号,除非在逻辑上需要。6、标识符前不应该加项目、部门名称等作为前缀,否则变动很麻烦。7、文件命名统一用小写字符。全局变量应该加g_ , 静态变量应该加s_。8、禁止使用单字符命名,但可以使用ijk作为局部变量。

2023-10-05 23:47:12 305

原创 《数学之美》心得体会

《数学之美》心得体会

2023-09-12 22:03:31 89

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除