抓住那头牛(bfs_广度优先搜索的基础运用)

6 篇文章 0 订阅

题目描述

农夫知道一头牛的位置,想要抓住它。农夫和牛都位于数轴上,农夫起始位于点N(1<=N<=100000),牛位于点K(1<=K<=100000)。农夫有两种移动方式:

1、从X移动到X-1或X+1,每次移动花费一分钟

2、从X移动到2*X,每次移动花费一分钟

假设牛没有意识到农夫的行动,站在原地不动。农夫最少要花多少时间才能抓住牛?

输入格式

多组输入

每组两个整数,N和K

输出格式

每组输出一个整数,占一行,农夫抓到牛所要花费的最小分钟数。

样例输入

1 2

样例输出

1

提示

信我的,不会就懵样例,保错。

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector> 
#include <map>
#include <stack>
#include <queue>
#include <set>
using namespace std;
typedef long long ll;
const int maxx = 1000050;
int n, m, k, t, now, p;
const double pi = acos(-1.0);
int step[maxx];
void bfs()
{
    memset(step, 0x3f, sizeof(step));//初始化
    queue<int> q;
    q.push(n);//将起点推入队列
    step[n] = 0;//初始步数为0
    while (!q.empty())
    {
        int f = q.front();
        q.pop();
        if (f == k)//已经到达终点//此方案结束
        {
            return;//回溯
        }
        if (f - 1 > 0 && step[f - 1] == 0x3f3f3f3f)//当其并未走过前一个身位并且至少f为大于1//防止越界
        {
            q.push(f - 1);//将前一个身位推入队列
            step[f - 1] = step[f] + 1;//步数 + 1;
        }
        if (f <= k)//当其到达终点或并未到达时
        {
            if (step[f + 1] == 0x3f3f3f3f)//如果下一个身位并未走过
            {
                q.push(f + 1);//将其推入队列
                step[f + 1] = step[f] + 1;
            }
            if (step[f * 2] == 0x3f3f3f3f)//当其二倍走法也没走过时
            {
                q.push(f * 2);
                step[f * 2] = step[f] + 1;//步数++;
            }
        }
    }
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    while (cin >> n >> k)//那农夫的位置 
    {
        bfs();
        cout << step[k] << endl;
    }
    return 0;
}

这道题的最短步数的由来是因为bfs将每一步的所有情况都找了出来,然后进行了对step[k]的不停覆盖从而找到最小值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tang_7777777

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值