有向图的拓扑序列(bfs && 邻接表)

该程序实现了有向图的拓扑序列算法。首先通过邻接表结构存储图,然后计算每个节点的入度。使用队列处理入度为0的节点,进行拓扑排序。如果排序过程中发现拓扑序列小于图中节点数,说明存在环,输出-1,否则输出拓扑序列。
摘要由CSDN通过智能技术生成

给定一个 n� 个点 m� 条边的有向图,点的编号是 11 到 n�,图中可能存在重边和自环。

请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出 −1

若一个由图中所有点构成的序列 A� 满足:对于图中的每条边 (x,y)(�,�),x� 在 A� 中都出现在 y� 之前,则称 A� 是该图的一个拓扑序列。

输入格式

第一行包含两个整数 n� 和 m�。

接下来 m� 行,每行包含两个整数 x� 和 y�,表示存在一条从点 x� 到点 y� 的有向边 (x,y)(�,�)。

输出格式

共一行,如果存在拓扑序列,则输出任意一个合法的拓扑序列即可。

否则输出 −1−1。

数据范围

1≤n,m≤1051≤�,�≤105

输入样例:
3 3
1 2
2 3
1 3
输出样例:
 2 3

类似的题

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector> 
#include <map>
#include <stack>
#include <queue>
#include <set>
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
ll n, m, k;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const double pi = acos(-1.0);
int pie[] = { 3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5,0,2,8,8,4,1,9,7,1,6,9,3,9,9,3,7,5,1,0 };
int nx, ny, nz, ex, ey, ez;
const int N  = 1e5 + 10;
int maxx = 1e6 + 3;
int dx[] = { 0 , 0 , 1 , -1 };
int dy[] = { 1 , -1 , 0 , 0 };
ll mod = 1e9 + 7;
//有向图
//拓扑序列:拓扑序列是对于有向图而言的,有向图的拓扑序是其顶点的线性排序,
//使得对于从顶点u 到顶点v的每个有向边uv, u在序列中都在v 之前。
int e[N], ne[N];
int h[N];//邻接表存储图
//依旧是模拟队列的作用int q[N], hh = 0, tt = -1;//队列保存入度为0 , 也就是能够输出的点//tt指向队列的位置
int d[N];//保存各个点的入度
int idx;
//拓扑、dfs、并查集都可以图中判断有没有环, floyd可以找最小环
int to[N] ,cnt;//用来保存拓扑序列 , cnt代表top中有多少个元素
void add(int a , int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
bool top()
{
    queue<int> q;
    int t;//指向位置
    for (int i = 1; i <= n; i++)
    {
        if (d[i] == 0)//入度为0就入队
        {
            q.push(i);
        }
    }
    while (!q.empty())
    {
        t = q.front();//取出队头进行遍历
        to[++cnt] = t;//加入到拓扑序列中
        q.pop();
        
        for (int i = h[t]; i != -1; i = ne[i])
        {
            //遍历t的出边
            int j = e[i];
            d[j] --;//j的入度--
            if (d[j] == 0)
            {
                q.push(j);//如果j入度为0,加入队列//继续遍历
            }
        }
    }
    if (cnt < n)//当其最终的遍历掉top元素的小于n说明拓扑排序不成立,其中有环
    {
        return 0;
    }
    else
    {
        return 1;
    }
}
void solve()
{
    cin >> n >> m;
    memset(h, -1, sizeof(h));//初始化头指针
    for (int i = 1; i <= m; i++)
    {
        int a, b;
        cin >> a >> b;
        add(a, b);//将有向边记录
        d[b] ++;//顶点b的入度+1
        
    }
    if (top() == 0)//进行拓扑排序
    {
        cout << "-1" << endl;
    }
    else
    {
        for (int i = 1; i <= n; i++)
        {
            cout << to[i] << " ";
        }
    }
    return;
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tang_7777777

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值