给定一个 n� 个点 m� 条边的有向图,点的编号是 11 到 n�,图中可能存在重边和自环。
请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出 −1。
若一个由图中所有点构成的序列 A� 满足:对于图中的每条边 (x,y)(�,�),x� 在 A� 中都出现在 y� 之前,则称 A� 是该图的一个拓扑序列。
输入格式
第一行包含两个整数 n� 和 m�。
接下来 m� 行,每行包含两个整数 x� 和 y�,表示存在一条从点 x� 到点 y� 的有向边 (x,y)(�,�)。
输出格式
共一行,如果存在拓扑序列,则输出任意一个合法的拓扑序列即可。
否则输出 −1−1。
数据范围
1≤n,m≤1051≤�,�≤105
输入样例:
3 3
1 2
2 3
1 3
输出样例:
2 3
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <map>
#include <stack>
#include <queue>
#include <set>
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
ll n, m, k;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const double pi = acos(-1.0);
int pie[] = { 3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5,0,2,8,8,4,1,9,7,1,6,9,3,9,9,3,7,5,1,0 };
int nx, ny, nz, ex, ey, ez;
const int N = 1e5 + 10;
int maxx = 1e6 + 3;
int dx[] = { 0 , 0 , 1 , -1 };
int dy[] = { 1 , -1 , 0 , 0 };
ll mod = 1e9 + 7;
//有向图
//拓扑序列:拓扑序列是对于有向图而言的,有向图的拓扑序是其顶点的线性排序,
//使得对于从顶点u 到顶点v的每个有向边uv, u在序列中都在v 之前。
int e[N], ne[N];
int h[N];//邻接表存储图
//依旧是模拟队列的作用int q[N], hh = 0, tt = -1;//队列保存入度为0 , 也就是能够输出的点//tt指向队列的位置
int d[N];//保存各个点的入度
int idx;
//拓扑、dfs、并查集都可以图中判断有没有环, floyd可以找最小环
int to[N] ,cnt;//用来保存拓扑序列 , cnt代表top中有多少个元素
void add(int a , int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
bool top()
{
queue<int> q;
int t;//指向位置
for (int i = 1; i <= n; i++)
{
if (d[i] == 0)//入度为0就入队
{
q.push(i);
}
}
while (!q.empty())
{
t = q.front();//取出队头进行遍历
to[++cnt] = t;//加入到拓扑序列中
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
//遍历t的出边
int j = e[i];
d[j] --;//j的入度--
if (d[j] == 0)
{
q.push(j);//如果j入度为0,加入队列//继续遍历
}
}
}
if (cnt < n)//当其最终的遍历掉top元素的小于n说明拓扑排序不成立,其中有环
{
return 0;
}
else
{
return 1;
}
}
void solve()
{
cin >> n >> m;
memset(h, -1, sizeof(h));//初始化头指针
for (int i = 1; i <= m; i++)
{
int a, b;
cin >> a >> b;
add(a, b);//将有向边记录
d[b] ++;//顶点b的入度+1
}
if (top() == 0)//进行拓扑排序
{
cout << "-1" << endl;
}
else
{
for (int i = 1; i <= n; i++)
{
cout << to[i] << " ";
}
}
return;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
solve();
return 0;
}