数据结构---二叉搜索树

二叉搜索树

什么是二叉搜索树?

二叉搜索树(Binary Search Tree 简称BST)又称二叉排序树,是一种二叉树的特殊形式,它在每个节点上存储的键值满足以下性质:

  • 若它的左子树不为空,则左子树上的所有节点的 值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树

根据这个性质,我们可以利用二叉搜索树进行高效的插入,删除和搜索操作。

在这里插入图片描述

二叉搜索树的操作

查找

  • 从根节点开始比较,如果比根节点大则往右查找,反之往左查找。
  • 最多查找高度次,走到空,还没找到,这个值不存在。

上面的图,比如果要查找4.

4 < 8,往左走,找到3,4大于3,往右走,找到6,6大于4,往左走,找到4,4 == 4,查找成功。

重复上面的操作,直到走到4,4小于5,往右走,为nullptr,不存在这个值,返回false。

void Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else
			{
				return true;
			}
		}
		return false;
	}

插入

  • 树为空,则直接新增节点,赋值给root指针
  • 树非空,按二叉搜索树性质查找插入位置,插入新节点。
bool Insert(const K& key)
{
	if (_root == nullptr)// 树为空
	{
		_root = new Node(key);
		return true;
	}

	Node* cur = _root;
	Node* parent = nullptr;
	while (cur) // 树非空
	{
		if (cur->_key < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

	if (parent->_key > key)
	{
		parent->_left = cur;
	}
	else
	{
		parent->_right = cur;
	}

	return true;
}

如果要插入的值(val)比当前节点的key大,则往右子树移动;反之往左子树移动,直到找到合适的插入位置。

在找到插入位置的时候,不要直接 cur = new Node(val),这样创建的是临时变量,出了作用域会销毁,可以用一个临时变量(parent)记录查找过程中cur的上一个位置,在找到合适的位置的时候,与parent节点的key进行比较之后,在进行链接。

删除

删除有点麻烦,

在这里插入图片描述

看这棵树,把7删了,很简单,delete了就行了,把14给删了呢?右子树的所有节点一定大于根节点,把13链接在10的右子树即可,就算13下面还有子树,也不会导致这个树混乱。那么删3呢?3有两个孩子,这个时候可以找人把3给替代了,从左子树找最大的节点,或者找右子树的最小节点完成替代。

删除分三种情况

  1. 没有孩子
  2. 一个孩子
  3. 两个孩子 (找左子树的最大节点 or 右子树的最小节点)

首先要找到要删除节点的位置(cur),但光找到一个节点的位置不够,还要找到当前节点的父节点(parent)。如果说cur的左子树为空,并且要删除的节点为根节点。

在这里插入图片描述

也就是当前cur位于8的位置,此时要删除,把根节点移动到cur的右子树位置即可。

若要删的不是根节点。

在这里插入图片描述

此时cur=6,parent=3,要先判断cur与parent的关系,然后直接将parent与cur的子树链接在一起即可。这是要删除节点的左子树为空的情况,右子树为空与这个一样。


若要删除的节点有两个孩子。

在这里插入图片描述

要先找到左子树中最大的节点(leftMax),将根节点的key与leftMax的key交换。在找leftMax的过程中记录下来其父节点(parent),判断parent和leftMax的关系。最后将parent与leftMax的左右节点(都为空)链接一下即可。


当然还有一种特殊情况。

在这里插入图片描述

这里要删除8,而3就是左子树中最大的节点。所以这种情况下的parent初始值不能设为nullptr,而是初始化为cur。leftMax还是初始化为cur->left


		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				if (cur->_left == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_right;
					}
					else
					{
						if (parent->_right == cur)
						{
							parent->_right = cur->_right;
						}
						else
						{
							parent->_left = cur->_right;
						}
					}
				}
				else if (cur->_right == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						if (parent->_right == cur)
						{
							parent->_right = cur->_left;
						}
						else
						{
							parent->_left = cur->_left;
						}
					}
				}
				else
				{}
				delete cur;
				return true;
			}
		}

源代码

非递归版

#pragma once


template <class K>
class BSTreeNode
{
public:

	BSTreeNode<K>* _left;
	BSTreeNode<K>* _right;
	K _key;

	BSTreeNode(const K& x)
		:_key(x)
		,_right(nullptr)
		,_left(nullptr)
	{}
		

	
};


template <class K>
class BSTree
{
	typedef BSTreeNode<K> Node;
public:
	BSTree()
		:_root(nullptr)
	{}

	bool Insert(const K& key)
	{
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}

		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(key);
		if (parent->_key > key)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}

		return true;
	}

	void Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else
			{
				return true;
			}
		}
		return false;
	}

	bool erase(const K& key)
	{
		Node* parent = _root;
		Node* cur = _root;

		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				if (cur->_left == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_right;
					}
					else
					{
						if (parent->_right == cur)
						{
							parent->_right = cur->_right;
						}
						else
						{
							parent->_left = cur->_right;
						}
					}
				}
				else if (cur->_right == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						if (parent->_right == cur)
						{
							parent->_right = cur->_left;
						}
						else
						{
							parent->_left = cur->_left;
						}
					}
				}
				else
				{
					Node* parent = cur;					
					Node* leftMax = cur->_left;
					while (leftMax->_right)
					{
						parent = leftMax;
						leftMax = leftMax->_right;
					}
					swap(leftMax->_key, _root->_key);
					if (parent->_left == leftMax)
					{
						parent->_left = leftMax->_left;
					}
					else
					{
						parent->_right = leftMax->_right;
					}

					cur = leftMax;
				}
				delete cur;
				return true;
			}
		}
		return false;
	}

	void InOrder()
	{
		_InOrder(_root);
	}

private:

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}

	Node* _root;
};

递归版

#pragma once


template <class K>
class BSTreeNode
{
public:

	BSTreeNode<K>* _left;
	BSTreeNode<K>* _right;
	K _key;

	BSTreeNode(const K& x)
		:_key(x)
		, _right(nullptr)
		, _left(nullptr)
	{}



};


template <class K>
class BSTree
{
	typedef BSTreeNode<K> Node;
public:
	BSTree()
		:_root(nullptr)
	{}

	bool Insert(const K& key)
	{
		return _Insert(_root, key);
	}

	bool Find(const K& key)
	{
		return _Find(_root, key);
	}

	bool erase(const K& key)
	{
		return _erase(_root, key);
	}

	void InOrder()
	{
		_InOrder(_root);
	}

private:

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}

	bool _erase(Node*& root, const K& key)
	{
		if (root == nullptr)
		{
			return false;
		}

		if (root->_key > key)
		{
			return _erase(root->_left,key);
		}
		else if (root->_key < key)
		{
			return _erase(root->_right,key);
		}
		else
		{
			Node* del = root;
			if (root->_left == nullptr)
			{
				root = root->_right;
			}
			else if (root->_right == nullptr)
			{
				root = root->_left;
			}
			else
			{
				Node* leftMax = root->_left;

				while (leftMax->_right)
				{
					leftMax = leftMax->_right;
				}

				swap(root->_key, leftMax->_key);

				return _erase(root->_left, key);
			}

			delete del;

			return true;
		}

		return false;
	}

	bool _Insert(Node*& root, const K& key)
	{
		if (root == nullptr)
		{
			root = new Node(key);
			return true;
		}

		if (root->_key > key)
		{
			return _Insert(root->_left,key);
		}
		else if (root->_key < key)
		{
			return _Insert(root->_right,key);
		}
		else
		{
			return false;
		}
	}

	bool _Find(Node* root, const K& key)
	{
		if (root == nullptr) {
			return false;
		}

		if (root->_key > key)
		{
			return _Find(root->_left);
		}
		else if (root->_key < key)
		{
			return _Find(root->_right);
		}
		else
		{
			return true;
		}
	}

	Node* _root;
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值