第二章作业

 1. 请以伪代码描述最大字段和的分治算法

function maxSubarraySum(arr, low, high){
    // Base Case: 如果只有一个元素, 直接返回该元素值
    if low == high:
        return arr[low]

    mid = (low + high) / 2

    // 递归调用左半部分的最大字段和
    leftMax = maxSubarraySum(arr, low, mid)
    // 递归调用右半部分的最大字段和
    rightMax = maxSubarraySum(arr, mid + 1, high)
    // 调用crossSum函数获取横跨中点的最大字段和
    crossMax = crossSum(arr, low, mid, high)

    // 返回左、右、和横跨的三者中的最大值
    return max(leftMax, rightMax, crossMax)
}

2. 分析该算法的时间复杂度

  • 在每一层递归中,问题的规模减少为原问题规模的一半,即n/2。
  • 横跨中点的最大字段和需要O(n)的时间复杂度。
  • 递归函数总共被调用了log(n)次,每次调用的时间复杂度为O(n)。
  • 因此,总的时间复杂度为O(n log(n))。

3. 结合本章的学习,你对分治法的体会和思考

分而治之:分治法的核心思想是将一个大问题划分为更小的子问题。这使得复杂的问题变得更易理解和解决。将问题分解成独立的子问题,能够降低解决问题的复杂度,使得我们可以更有效地处理各个子问题。

递归求解:分治法通常通过递归的方式来解决子问题。递归可将问题不断划分为规模更小的子问题,直到达到基本情况,然后再从下往上将子问题的解合并起来。这种递归的求解方式能够简化问题的处理过程,提高代码的可读性和可维护性。

寻找最优解:分治法可用于解决优化问题,通过将问题划分为子问题,并比较子问题的解来找到最优解。这种方法特别适用于如排序、搜索和图算法等领域,它通常能够提供高效且近似的最优解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值