目录
F-Apples:
题目大意:
样例解释:
思路解析:
题目要求我们选择任意一对S,L,让苹果满足 S-0.5<= T<= S + D - 0.5 和 L-0.5 <= X <= L + W -0.5的苹果数量尽可能多,并且输出在能选择的可能性中最多的苹果数量为多少,其实我们可以发现这个需要满足的条件其实等价于 S <= T <= S+D 和 L <= x <= L + W,这是因为T和X都是整数。
那我们可以将所有苹果按照T排序,那么我们可以利用双指针来固定任意一个S的可能性,那么我们就需要查询在当前时间轴下,怎么选择L,可以使得答案最优。这个寻优过程其实可以反过来看作每个苹果可以对W大小的区间产生影响,我们应该找到那个点拥有的影响最大,这里那么就可以使用线段树的区间修改 (查询信息的正确 其实可以在修改时就可以维护出来)。
代码实现:
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
static long inf = (long) 2e18;
static long mod = 998244353;
public static void main(String[] args) throws IOException {
int t = 1;
while (t > 0) {
solve();
t--;
}
w.flush();
w.close();
br.close();
}
public static void solve() {
int N = f.nextInt();
int D = f.nextInt();
int W = f.nextInt();
int max = 0;
int[][] p = new int[N][2];
for (int i = 0; i < N; i++) {
p[i][0] = f.nextInt();
p[i][1] = f.nextInt();
max = Math.max(p[i][1], max);
}
Arrays.sort(p, ((o1, o2) -> {
return o1[0] - o2[0];
}));
int i = 0;
int j = 0;
SegTree seg = new SegTree();
seg.build(1, 1, max);
int ans = 0;
while (j < N){
if (i > 0){
int x = p[i-1][1];
seg.add(1, Math.max(1, x - W + 1), x, -1);
}
while (j < N && p[j][0] - p[i][0] < D){
int x = p[j][1];
seg.add(1, Math.max(1, x - W + 1), x, 1);
j++;
}
ans = Math.max(ans, seg.t[1].max);
i++;
}
w.println(ans);
}
static int MAXN = (int) 2e5 + 5;
static class Node{
int l, r, max, lazy;
}
static class SegTree{
Node[] t = new Node[MAXN * 4];
public SegTree(){
for (int i = 0; i < MAXN * 4; i++) {
t[i] = new Node();
}
}
public void build(int root, int l, int r){
t[root].l = l; t[root].r = r;
if (l == r) return;
int mid = (l + r) >> 1;
build(root << 1, l, mid);
build((root << 1) | 1, mid+1, r);
}
public void push_down(int root){
if (t[root].lazy != 0){
if (t[root].l != t[root].r){
int ch = root << 1;
int x = t[root].lazy;
t[ch].max += x;
t[ch |1].max += x;
t[ch].lazy += x;
t[ch | 1].lazy += x;
}
t[root].lazy = 0;
}
}
public void add(int root, int l, int r, int x){
push_down(root);
if (t[root].l == l && t[root].r == r){
t[root].max += x;
t[root].lazy += x;
return;
}
int mid = (t[root].l + t[root].r) >> 1;
int ch = root << 1;
if (r <= mid) add(ch, l, r, x);
else if (l > mid) add(ch|1, l, r, x);
else {
add(ch, l, mid, x);
add(ch|1, mid+1, r, x);
}
update(root);
}
public void update(int root){
t[root].max = Math.max(t[root << 1].max, t[(root << 1) | 1].max);
}
}
static PrintWriter w = new PrintWriter(new OutputStreamWriter(System.out));
static Input f = new Input(System.in);
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static class Input {
public BufferedReader reader;
public StringTokenizer tokenizer;
public Input(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
String str = null;
try {
str = reader.readLine();
} catch (IOException e) {
// TODO 自动生成的 catch 块
e.printStackTrace();
}
return str;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public Double nextDouble() {
return Double.parseDouble(next());
}
public BigInteger nextBigInteger() {
return new BigInteger(next());
}
}
}