牛客周赛39 --- G -- 小红不想做平衡树 -- 题解

小红不想做平衡树:

思路解析:

好数组的定义为 恰好翻转一个区间是得,这个区间变为升序的。

那么就有五种情况:

1.本身数组就升序的, 翻转一个长度为1的区间后,数组仍为升序

2.本身数组就降序的,翻转整个区间后,数组为升序。

3.数组先升序后降序,翻转降序区间后,数组变为升序 (需要满足降序区间最小元数大于升序区间最大元数)

4.数组先降序后升序,翻转降序区间后,数组变为升序,(需要满足降序区间最大元数小于升序区间最小元数)

5.数组先升序再降序后升序,翻转降序区间后数组变为升序,(需要满足3和4的条件)

代码实现:


import java.io.*;
import java.math.BigInteger;
import java.util.*;


public class Main {
    static int inf = (int) 1e9;

    public static void main(String[] args) throws IOException {

        int t = 1;
        while (t > 0) {
            solve();
            t--;
        }
        w.flush();
        w.close();
        br.close();
    }

    static int n;
    static int[]  pre;
    static int[] suf;
    static int[] a;
    static long ans = 1;

    public static void solve() {
        n = f.nextInt();
        pre = new int[n+1];
        suf = new int[n+1];
        a = new int[n+1];
        for (int i = 1; i <= n; i++) {
            a[i] = f.nextInt();
        }

        pre[1] = 1;
        for (int i = 2; i <= n; i++) {
            if (a[i] > a[i-1]) pre[i] = pre[i-1];
            else pre[i] = i;
            ans += i - pre[i] + 1;
        }
        suf[n] = n;
        for (int i = n-1; i > 0; i--) {
            if (a[i] < a[i+1] ) suf[i] = suf[i+1];
            else suf[i] = i;
        }
        int i = 1;
        while (i <= n){
            int j = i;
            while (j < n){
                if (a[j] > a[j+1]) j++;
                else break;
            }
            if (j > i) calc(i, j);
            i = j+1;
        }
        w.println(ans);
    }

    // 全升序
    // 全降序
    // 先升序后降序
    // 先降序后升序
    // 先升序, 后降序, 再升序

    public static void calc(int l, int r){
        int len = (r - l + 1);
        ans +=(long) len * (len - 1) / 2; // 全降序

        for (int i = l; i <= r; i++) { // 先升序 后降序
            if (a[i] <= a[l-1] || l == 1){
                break;
            }
            ans += l - pre[l];
        }
        ans -= l - pre[l];

        for (int i = r; i >= l; i--) { // 先降序 后升序
            if (a[i] >= a[r+1] || r == n) break;
            ans += suf[r] - r;
        }
        ans -= suf[r] - r;

        if (l > 1 && r < n && a[l] < a[r+1] && a[r] > a[l-1]){
            ans += (long) (l - pre[l]) * (suf[r] - r);
        }
    }

    static PrintWriter w = new PrintWriter(new OutputStreamWriter(System.out));
    static Input f = new Input(System.in);
    static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

    static class Input {
        public BufferedReader reader;
        public StringTokenizer tokenizer;

        public Input(InputStream stream) {
            reader = new BufferedReader(new InputStreamReader(stream), 32768);
            tokenizer = null;
        }

        public String next() {
            while (tokenizer == null || !tokenizer.hasMoreTokens()) {
                try {
                    tokenizer = new StringTokenizer(reader.readLine());
                } catch (IOException e) {
                    throw new RuntimeException(e);
                }
            }
            return tokenizer.nextToken();
        }

        public String nextLine() {
            String str = null;
            try {
                str = reader.readLine();
            } catch (IOException e) {
                // TODO 自动生成的 catch 块
                e.printStackTrace();
            }
            return str;
        }

        public int nextInt() {
            return Integer.parseInt(next());
        }

        public long nextLong() {
            return Long.parseLong(next());
        }

        public Double nextDouble() {
            return Double.parseDouble(next());
        }

        public BigInteger nextBigInteger() {
            return new BigInteger(next());
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Studying~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值