Codeforces Round 926 (Div. 2) ---- F. Sasha and the Wedding Binary Search Tree --- 题解

F.Sasha and the Wedding Binary Search Tree:

题目描述:

import java.util.*;


import java.io.*;
import java.math.*;

public class Main {
    static int mod = 998244353;
    static long[] pow;
    static long[] inv;
    public static void main(String[] args) throws IOException {
        pow = new long[500005];
        inv = new long[500005];
        pow[0] = inv[0] = 1;
        for (int i = 1; i < 500005; i++) {
         pow[i] = pow[i-1] * i % mod;
         inv[i] = qkm(pow[i]);
        }
        int t = f.nextInt();
        while (t > 0) {
            solve();
            t--;
        }
        w.flush();
        w.close();
    }
    static Node[] nodes;
    static int[] a;
    public static void solve() throws IOException{
        p = 1;
        int n = f.nextInt(); int c = f.nextInt();
        nodes = new Node[n+1];
        a = new int[n+2];
        for (int i = 0; i < n + 1; i++) {
            nodes[i] = new Node();
        }
        for (int i = 1; i <= n; i++) {
            int l = f.nextInt(); int r = f.nextInt(); int val = f.nextInt();
            if (l != -1)
                nodes[i].l = nodes[l];
            if (r != -1)
                nodes[i].r = nodes[r];
            nodes[i].val = val;
        }
        a[0] = 1; a[n+1] = c;
        dfs(nodes[1]);
        long ans = 1;
        for (int i = 0; i < n + 1;) {
            int j = i+1;
            while (j < n+2 && a[j] == -1) j++;
            if (i+1 < j){
                long res = 1;
                for (int k = a[j] - a[i] + j-i-1; k > a[j] - a[i]; k--) {
                    res *= k;
                    res %= mod;
                }
                ans *= res * inv[j-i-1] % mod;
                ans %= mod;
            }
            i = j;
        }
        System.out.println(ans);
    }
    static int p = 1;

    public static void dfs(Node cur){
        if (cur.l != null) dfs(cur.l);
        a[p++] = cur.val;
        if (cur.r != null) dfs(cur.r);
    }
    public static long bin(int x, int y){
        return pow[x] * inv[y] % mod * inv[x-y] % mod;
    }

    public static class Node{
        Node l;
        Node r;
        int val;

    }

    static long qkm (long x){
        long res = 1;
        long b = mod - 2;
        while (b > 0) {
            if ((b & 1) == 1) res = (res * x) % mod;
            x = x*x % mod;
            b >>= 1;
        }
        return res;
    }


    static PrintWriter w = new PrintWriter(new OutputStreamWriter(System.out));
    static Input f = new Input(System.in);

    static class Input {
        public BufferedReader reader;
        public StringTokenizer tokenizer;

        public Input(InputStream stream) {
            reader = new BufferedReader(new InputStreamReader(stream), 32768);
            tokenizer = null;
        }

        public String next() throws IOException{
            while (tokenizer == null || !tokenizer.hasMoreTokens()) {
                tokenizer = new StringTokenizer(reader.readLine());
            }
            return tokenizer.nextToken();
        }

        public int nextInt() throws IOException {
            return Integer.parseInt(next());
        }

        public long nextLong() throws IOException {
            return Long.parseLong(next());
        }

        public Double nextDouble() throws IOException {
            return Double.parseDouble(next());
        }
    }
}

思路解析:

显然我们可以得到这个二叉搜索树的中序表现形式,假设为 [2 -1 -1 4 -1 -1 -1 5] 其中-1表示该点的值是任意的,但是必须满足 1 <= -1 <= c。 那我们可以发现此时二叉搜索树需要满足,[2 -1 -1 4]为非降序数列, [4 -1 -1 -4 5] 为非降序数列。 对于第一个数列其中-1可能为2或3或4,如果我们确定了2的个数和3的个数和4的个数,此时那么对应的 -1 -1 这个非降序数列也就确定了,所以非降序数列的个数,就变成了将2个球分为3组的情况数,并且要求每组的个数大于等于0。然后我们发现第一个序列的取值,并不影响下一个序列,所以变成了每个序列答案相乘。

代码实现:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Studying~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值