- 博客(4)
- 收藏
- 关注
原创 微调GPT-3.5 Turbo:从数据准备到模型部署
user是用户输入的需要提取的医学文献对应之前的prompt,assistant则是理想的模型输出结果,对应之前的completion。{"messages": [{"role": "system", "content": "处理好的instruction"}, {"role": "user", "content": "用户输入的文献"}, {"role": "assistant", "content": "专家标注的,处理成json格式的,期望模型输出的最终形式"}假阴性率8.8%,人数为3,对应正确;
2024-06-23 03:35:30 929
原创 Prompt工程:Create GPTs实现医学文献信息预处理与规格化输出
为了使GPTs能够有效提取医学文献信息,首先需要定义系统指令和用户提示。这些指令和提示用于指导模型理解任务的具体要求。系统指令:用于设定模型的整体行为。例如,可以设定模型以提取医学文献中的关键数据。用户提示:用于提供具体的任务指示。例如,提供一段医学文献,并要求模型提取参与者数量、干预措施、对照措施、结果测量等信息。通过本文的详细介绍,我们深入探讨了如何利用Prompt工程优化GPTs,以高效提取医学文献信息。
2024-06-22 19:31:29 806
原创 定义医学文献信息提取的输出形式:JSON与表格化模式
为了规范多个模型的输出样式,在接入前后端系统后更方便表格化处理,我们需要定义一种标准的输出形式。在初期的数据处理和表格化展示过程中遇到了一些阻力,但通过使用组员白云清设计的新的BRAT的conf文件表示形式,该文件引入了event链接entity的方式来处理outcome和对应数值的关系,我重新标注了部分数据集,使输出的ann文件内更有逻辑。在此基础上,我设定了组内多个模型通用的json串格式作为模型的输出格式和前后端传送的格式,并区分了固定数据和可变数据,使得最终的json格式可以直接生成期望的数据表格。
2024-06-22 17:18:59 670
原创 利用BRAT工具处理数据集:一个全面指南
BRAT(BRAT Rapid Annotation Tool)是一个广泛使用的文本标注工具,特别适用于需要高精度和高一致性的领域。它提供了一个直观的Web界面,使标注过程变得更加高效和用户友好。BRAT支持多种标注任务,包括命名实体识别(NER)、关系提取、事件检测等。通过BRAT工具,我们能够对复杂的研究文本进行精确的标注。正确使用这些标注不仅有助于理解和分析研究数据,还有助于后续的数据处理和机器学习模型的训练。BRAT提供了一个直观的界面,使得标注过程更加高效和准确。
2024-05-30 17:23:32 1114
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人