目录
引言
微调(Fine-tuning)是对预训练的大语言模型(如GPT-3.5 Turbo)进行进一步训练,以适应特定任务的一种方法。通过微调,可以使模型在特定领域内表现得更为出色,生成更加准确和相关的输出。相比于Prompt工程,微调有其独特的优点和缺点。
-
微调大模型的概念: 微调是指在已经训练好的大语言模型的基础上,使用特定领域的数据对其进行进一步的训练。目的是使模型更好地理解和处理该领域的任务。
-
微调的优点:
-
稳定性高:通过训练模型来适应特定任务,具有更高的稳定性和准确性。
-
适用于复杂任务:在处理复杂任务时,微调模型可以提供更一致和可靠的结果。
-
-
微调的缺点:
-
资源消耗大:需要更多的计算资源和时间来进行训练。
-
技术门槛高:需要一定的编程和机器学习知识来实现和优化模型。
-
模型参数变动:微调会改变模型的内部参数,可能需要为不同任务分别微调模型。
-
相比之下,Prompt工程门槛低、见效快、灵活性高,但在处理复杂任务和长时间项目中,微调模型更具优势。本文将详细介绍如何微调GPT-3.5 Turbo,从数据准备到模型部署的全过程。
数据准备
为了微调GPT-3.5 Turbo,需要准备训练数据。以下是详细的步骤:
-
准备原始数据:从医学文献中提取需要处理的信息,生成类似于博客2中处理结果的JSON格式数据。
-
标注数据:对数据进行标注,生成prompt-completion的JSON串。
-
生成JSONL文件:将标注数据转换为适用于微调的JSONL格式。在这个过程中,需要将数据调整为包含system、user和assistant三段输出的一行JSON。system对应模型的instruction,在这里的instruction是博客3中instruction的改进版。需要明确且一次性的指明输出json格式,解释字段的含义,解释outcome和对应参数的输出格式,限制提取的关键词范围,区分outcome和outcome-measure的概念,排除干扰项等instruction描述。user是用户输入的需要提取的医学文献对应之前的prompt,assistant则是理想的模型输出结果,对应之前的completion。
示例JSON格式:
{"messages": [{"role": "system", "content": "处理好的instruction"}, {"role": "user", "content": "用户输入的文献"}, {"role": "assistant", "content": "专家标注的,处理成json格式的,期望模型输出的最终形式"}
微调过程
使用OpenAI的API进行模型微调,首先我们选择微调gpt-3.5-turbo-1106模型
具体步骤如下ÿ