第19篇:DP²-FedSAM: 通过个性化的敏锐度感知最小化增强差分隐私联邦学习DP2-FedSAM: Enhancing Differentially PrivateFederated

第一部分:解决的问题

  • 联邦学习(Federated Learning, FL) 是一种分布式学习方法,允许多个客户端在不共享原始数据的情况下协作训练模型。
  • 为保护数据隐私,差分隐私(Differential Privacy, DP)被集成到联邦学习中,形成差分隐私联邦学习(DPFL)。
  • 然而,现有DPFL方法(例如DP-FedAvg)由于对模型更新的裁剪和噪声添加操作,在异构数据环境下(如非独立同分布数据,Non-IID)导致模型性能显著下降

第二部分:解决问题使用到的方法

论文提出的 DP2-FedSAM 方法,通过以下改进在保障隐私的同时显著提升了模型性能:

(1)部分模型个性化(Partial Model Personalization):

将模型划分为共享的表示提取器和个性化的分类器头,只共享表示提取器。这减少了数据异构性带来的偏差并缓解了裁剪误差。

(2)敏锐感知最小化(Sharpness-Aware Minimization, SAM):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值