第十篇:多模态大模型CoIN: A Benchmark of Continual Instruction Tuningfor Multimodal Large Language Models

第一部分:基本信息

  • 会议/时间:NeurIPS 2024(明确发表于 2024 年底)

  • 主题:提出多模态大模型(MLLMs)的持续指令微调基准,关注灾难性遗忘与任务顺序影响。

  • 地位:这是四篇中最早的,奠定了 MLLM 训练过程分析的基础,尤其是 LoRA 的持续学习问题。

第二部分:解决的问题

(1)主要问题

  • 没有适用于多模态大模型的“持续指令微调”基准
    现有工作要么只研究纯文本 LLM,要么只在单一任务(比如分类)上分析 MLLM(多模态大预言模型) 的遗忘现象,缺乏一个覆盖多种视觉任务、可系统分析灾难性遗忘 的公共 基准(测试 / 数据集)。

  • 在本文中,我们提出 CoIN—— 一个专为评估现有 MLLMs持续指令微调下</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值