最小(代价)生成树—Prim算法与Kruskal算法

目录

 一、最小生成树的特点

二、最小生成树算法 

① Prim(普里姆)算法

②Kruskal(克鲁斯卡尔)算法

 ③Prim算法与Kruskal算法对比


 一、最小生成树的特点

最小生成树是带权连通图G=(V,E)的生成树中边的权值之和最小的那棵生成树。它具有以下特点:

  1. 图G中各边权值互不相等时有唯一的最小生成树。图G的边数等于顶点数减1时,图G的最小生成树是它本身。其他情况最小生成树不是唯一的。
  2. 最小生成树的边的权值之和是唯一的且是最小的。
  3. 最小生成树的边数为顶点数减1。

二、最小生成树算法 

① Prim(普里姆)算法

基本思想

  1. 初始时从图中任意选择一个顶点加入树T。
  2. 之后选择一个与当前顶点集合之间的边权值最小的顶点,并将该顶点和相应的边加入树T,每次操作后顶点数和边数都加1。
  3. 重复步骤2,直至图中所有顶点都并入了树T,得到的T就是最小生成树。

408标准2017:MST的顶点和边一样时,就是同一个MST,不区分根结点是谁。

Kruskal(克鲁斯卡尔)算法

基本思想

  1. 初始时为只有n个顶点而无边的非连通图T={V,{}},每个顶点自成一个连通分量。
  2. 然后按照边的权值由小到大的顺序,不断选取当前未被选取过且权值最小的边,若该边依附的顶点落在T中不同的连通分量上,则将此边加入T,否则舍弃此边选择接下来权值最小的边。
  3. 重复步骤2,直至图中所有顶点都连通了,得到的T就是最小生成树。

 ③Prim算法与Kruskal算法对比

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴落

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值