
RNN、LSTM神经网络案例
文章平均质量分 97
记录RNN、LSTM学习案例
羊小猪~~
去寻找理想的“天空之城”
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习项目--基于RNN的阿尔茨海默病诊断研究(pytorch实现)
它通过展示模型预测结果与实际标签之间的对比,帮助我们理解模型的准确度以及其在不同类别上的表现。其中,与患病相关性比较强的有:MMSE得分、功能评估得分、记忆抱怨、行为问题等相关性比较强,其中,MMSE得分、功能评估得分为负相关,记忆抱怨、行为问题为正相关。而对于多分类问题,混淆矩阵会相应地扩展到NxN的大小(N为类别数量),每一行代表实际类别,每一列代表预测类别。通过发现,由于原本数据中不患病的多,所以不患病的在图像中显示多,通过观察发现。:这里写代码的时候,不知道为什么,不指定字体,就显示不了字体。原创 2025-02-14 21:35:06 · 1040 阅读 · 0 评论 -
深度学习项目--基于LSTM--MLP的糖尿病预测探究(pytorch实现)
模型一直是一个很经典的模型,一般用于序列数据预测,这个可以很好的挖掘数据上下文信息,原创 2025-01-24 16:40:03 · 1791 阅读 · 0 评论 -
深度学习项目--基于LSTM的火灾预测研究(pytorch实现)
时间是每隔固定时间收集的,故有用特征为:温度、CO、Soot。rmse、r2都不错,但是拟合度还可以再提高。原创 2025-01-17 22:00:17 · 2973 阅读 · 3 评论 -
错误修改系列---基于RNN模型的心脏病预测(pytorch实现)
这篇文章进行修改,修改后,我们先对数据进行标准化,后再进行划分就会简单很多(模型参数输入,这里应该是13个特征维度,而且这里用后面处理也不好,因为最后应该还加一层激活函数的,所以这次修改采用多分类处理方法,原创 2025-01-11 22:48:13 · 1426 阅读 · 5 评论 -
基于RNN模型的心脏病预测,提供tensorflow和pytorch实现
target与chol、没有什么相关性,fbs是分类变量,chol胆固醇是数值型变量,但是从实际角度,这些都有影响,故不剔除特征。其中分类变量为:sex、cp、fbs、restecg、exang、slope、ca、thal、target。数值型变量:age、trestbps、chol、thalach、oldpeak。测试集表现不是很理想,合理尝试变化不同的批次,会有不同效果。这里先划分为:训练集:测试集 = 9:1。最大值和最小值都可能发生,原创 2025-01-03 21:52:16 · 1427 阅读 · 0 评论 -
基于RNN模型的心脏病预测(tensorflow实现)
target与chol、没有什么相关性,fbs是分类变量,chol胆固醇是数值型变量,但是从实际角度,这些都有影响,故不剔除特征。其中分类变量为:sex、cp、fbs、restecg、exang、slope、ca、thal、target。数值型变量:age、trestbps、chol、thalach、oldpeak。这里先划分为:训练集:测试集 = 9:1。最大值和最小值都可能发生,原创 2025-01-03 21:48:44 · 1620 阅读 · 2 评论