SCAU 8615 快乐

该编程题是关于背包问题的动态规划解决策略。给定n道题,每道题有快乐指数增益和精力消耗,目标是找到最大快乐指数同时确保至少剩余1点精力。通过动态规划构建二维数组dp,遍历题目和精力值,计算最优解。最终输出Lian能获得的最大快乐指数。
摘要由CSDN通过智能技术生成

8615 快乐
该题有题解

时间限制:500MS 代码长度限制:10KB
提交次数:312 通过次数:98

题型: 编程题 语言: G++;GCC
Description
Lian是一个喜欢看动画片的人,自从成为ACMer(ACM爱好者)之后,他又迷上了网上做题。做题让他快乐,不过这也是需要付出精力的!!
假设有n道题,Lian做出第i道题后,他可以获得的快乐指数将增加gethappy[i],而消耗掉的精力将是losspow[i]。
假设Lian初始的快乐指数为1,精力为2000。可以理解,如果他消耗完了所有的精力那他得到再多的快乐都没有用。
你的任务就是帮他计算他所能得到的最多的快乐指数,且最后他依然有多余的精力(即至少为1)。

输入格式
第一行输入一个整数n,表示有n道题。(n<=50)
第二行输入n个整数,表示gethappy[1]到gethappy[n]
第三行输入n个整数,表示losspow[1]到losspow[n]。

输出格式
一个整数,表示Lian所能获得的最大快乐指数。

输入样例
3
15 23 61
350 1301 1513

输出样例
77

背包问题(动态规划)
在这里插入图片描述

代码:

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
#define pow 1999 //要留有精力
int n;
int gethappy[55];
int losspow[2005];
int dp[55][2005]={0};

int main()
{
	
	cin >> n;
	
	for (int i = 1;i <=n;i++)
	{
		cin >> gethappy[i];
	}
	for (int i = 1;i <=n;i++)
	{
		cin >>losspow[i];
	}
	for (int i = 1;i <= n;i++)//后面有i-1,故这里从1开始而不是从0开始
	{
		for (int j = 1;j <= pow;j++)
		{
			if (j <losspow[i])dp[i][j]= dp[i - 1][j];
			else dp[i][j]=max(dp[i - 1][j], dp[i - 1][j - losspow[i]]+gethappy[i]);
		}
	}
	cout << dp[n][1999]+1;
	return 0;
}

/*
* 测试样例
7
8 37 52 36 27 17 18
110 115 1125 72 93 162 470
*/

过程理解:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值