机器学习中的标准化和归一化

        标准化和归一化是两种常用的数据预处理技术。它们用于将数据缩放到一个特定的范围,以提高机器学习模型的性能。

1. 标准化 (Standardization)

        标准化将数据转换为均值为0,标准差为1的分布。公式如下:

\boldsymbol{\mathbf{}z = \frac{x-\mu }{\sigma}}

其中:

  • z 是标准化后的值
  •  x 是原始值
  • \mu 是原始数据的均值
  • \sigma 是原始数据的标准差
    from sklearn.preprocessing import StandardScaler
    
    def test():
        # 准备数据
        data = [
            [5, 20, 10,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值