Transformer模型整体构建的实现

编码器-解码器结构

class EncoderDecoder(nn.Module):
    def __init__(self, encoder, decoder, source_embedding, target_embedding, generator):
        """初始化函数中有5个参数, 分别是编码器对象, 解码器对象,
           源数据嵌入函数, 目标数据嵌入函数,  以及输出部分的类别生成器对象
        """
        super(EncoderDecoder, self).__init__()
        # 将参数传入到类中
        self.encoder = encoder
        self.decoder = decoder
        self.source_embedding = source_embedding
        self.target_embedding = target_embedding
        self.generator = generator

    def forward(self, source_input, target_input, source_mask, target_mask):
        """在forward函数中,有四个参数, source_input代表源数据, target_input代表目标数据,
           source_mask和target_mask代表对应的掩码张量"""

        # 在函数中, 将source_input, source_mask传入编码函数, 得到结果后,
        # 与source_mask,target_input,和target_mask一同传给解码函数.
        return self.decode(self.encode(source_input, source_mask), source_mask,
                           target_input, target_mask)

    def encode(self, source_input, source_mask):
        """编码函数, 以source_input和source_mask为参数"""
        # 使用source_embedding对source_input做处理, 然后和source_mask一起传给self.encoder
        return self.encoder(self.source_embedding(source_input), source_mask)

    def decode(self, encoder_output, source_mask, target_input, target_mask):
        """解码函数, 以memory即编码器的输出, source_mask, target_input, target_mask为参数"""
        # 使用target_embedding对target_input做处理, 然后和source_mask, target_mask, encoder_output一起传给self.decoder
        return self.decoder(self.target_embedding(target_input), encoder_output, source_mask, target_mask)


if __name__ == "__main__":
    # 设置参数
    test_embedding_dim = 512
    test_vocab_size = 10000
    test_max_len = 100
    test_heads = 8
    test_dropout = 0.2
    d_ffl = 64
    size = d_model = test_embedding_dim

    # 假设源数据与目标数据相同, 实际中并不相同
    source = target = test_input_tensor = torch.LongTensor([[1, 2, 3, 4], [4, 3, 2, 1]])

    # 多头注意力机制计算(前一个是多头自注意力,后一个就是多头注意力)
    # 原文本的掩码(source_mask) 和 目标文本的掩码(target_mask) 实际中可能不同,这里为了方便计算使它们相同
    test_mask = torch.zeros(8, 4, 4)
    src_mask = tar_mask = test_mask
    self_mha = mha = MultiHeadedAttention(test_heads, test_embedding_dim, test_dropout)

    # 前馈全连接层
    ffl = FeedForwardLayer(d_model, d_ffl, test_dropout)

    # 编码器层和解码器层数
    test_num_layers = 4
    # 编码器层
    el = EncoderLayer(size, deepcopy(self_mha), deepcopy(ffl), test_dropout)
    # 编码器
    encoder = TransformerEncoder(el, test_num_layers)
    # 解码器层
    dl = DecoderLayer(test_embedding_dim, deepcopy(self_mha), deepcopy(mha), deepcopy(ffl), test_dropout)
    # 解码器
    decoder = TransformerDecoder(dl, test_num_layers)
    # 输出部分
    output = TransformerOutput(test_embedding_dim, test_vocab_size)

    # 编码器-解码器
    source_embed = nn.Embedding(test_embedding_dim, d_model)
    target_embed = nn.Embedding(test_embedding_dim, d_model)
    ed = EncoderDecoder(encoder, decoder, source_embed, target_embed, output)
    ed_result = ed(source, target, src_mask, tar_mask)
    print(ed_result)
    print(ed_result.shape)

 

tensor([[[-1.5362,  0.6945,  0.1928,  ..., -0.1635,  0.9268,  0.9474],
         [-2.1193,  0.9950, -0.2294,  ..., -0.8179,  1.5066,  1.3784],
         [-0.8416,  0.9558,  0.1298,  ...,  1.1093,  0.8565, -0.2909],
         [-0.6144,  0.5424, -0.0701,  ..., -0.8175,  0.9698,  0.0310]],

        [[-0.7840,  0.1226, -0.1851,  ..., -0.8425,  1.4955,  0.6446],
         [-0.3039,  0.5960,  0.1360,  ...,  0.8229,  1.3549, -0.6942],
         [-2.0222,  0.6236, -0.5268,  ..., -1.3863,  1.0146,  1.1675],
         [-1.9935,  0.2078,  0.9256,  ..., -1.0024,  1.0066,  1.0787]]],
       grad_fn=<AddBackward0>)
torch.Size([2, 4, 512])

Transformer模型构建函数


def build_transformer_model(source_vocab_size, target_vocab_size, num_layers=4,
                            model_dim=512, feedforward_dim=2048, num_heads=8, dropout=0.1):
    """该函数用来构建模型, 有7个参数,分别是源数据词汇总数,目标数据词汇总数,
       编码器和解码器堆叠数,词向量维度,前馈全连接网络中变换矩阵的维度,
       多头注意力结构中的多头数,以及置零比率dropout."""

    # 实例化多头注意力类
    self_mha_attention = mha_attention = MultiHeadedAttention(num_heads, model_dim)

    # 实例化前馈全连接层
    feedforward = FeedForwardLayer(model_dim, feedforward_dim, dropout)

    # 实例化位置编码类
    positional_encoding = PositionalEncoding(model_dim, dropout)

    # 最外层是EncoderDecoder, 在EncoderDecoder中,
    # 分别是编码器层,解码器层,源数据文本嵌入层和位置编码组成的有序结构,
    # 目标数据Embedding层和位置编码组成的有序结构,以及类别生成器层.
    # 在编码器层中有注意力子层以及前馈全连接子层,
    # 在解码器层中有两个注意力子层以及前馈全连接层.
    model = EncoderDecoder(
        TransformerEncoder(EncoderLayer(model_dim, deepcopy(mha_attention), deepcopy(feedforward), dropout),
                           num_layers),
        TransformerDecoder(DecoderLayer(model_dim, deepcopy(self_mha_attention), deepcopy(mha_attention),
                                        deepcopy(feedforward), dropout), num_layers),
        nn.Sequential(TextEmbeddings(source_vocab_size, model_dim), deepcopy(positional_encoding)),
        nn.Sequential(TextEmbeddings(target_vocab_size, model_dim), deepcopy(positional_encoding)),
        TransformerOutput(model_dim, target_vocab_size))

    # 模型结构完成后,接下来就是初始化模型中的参数,比如线性层中的变换矩阵
    # 这里一旦判断参数的维度大于1,则会将其初始化成一个服从均匀分布的矩阵.
    for param in model.parameters():
        if param.dim() > 1:
            nn.init.xavier_uniform_(param)
    return model


if __name__ == "__main__":
    source_vocab = 12
    target_vocab = 12
    test_num_layers = 4
    result = build_transformer_model(source_vocab, target_vocab, test_num_layers)
    print(result)

EncoderDecoder(
  (encoder): TransformerEncoder(
    (encoder_layers): ModuleList(
      (0-3): 4 x EncoderLayer(
        (self_attention): MultiHeadedAttention(
          (linears): ModuleList(
            (0-3): 4 x Linear(in_features=512, out_features=512, bias=True)
          )
          (dropout): Dropout(p=0.1, inplace=False)
        )
        (feed_forward): FeedForwardLayer(
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
        (sublayers): ModuleList(
          (0-1): 2 x SublayerConnectionWithNormalization(
            (norm): NormalizationLayer()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
    )
    (norm_layer): NormalizationLayer()
  )
  (decoder): TransformerDecoder(
    (layers): ModuleList(
      (0-3): 4 x DecoderLayer(
        (self_mha_attention): MultiHeadedAttention(
          (linears): ModuleList(
            (0-3): 4 x Linear(in_features=512, out_features=512, bias=True)
          )
          (dropout): Dropout(p=0.1, inplace=False)
        )
        (mha_attention): MultiHeadedAttention(
          (linears): ModuleList(
            (0-3): 4 x Linear(in_features=512, out_features=512, bias=True)
          )
          (dropout): Dropout(p=0.1, inplace=False)
        )
        (feed_forward): FeedForwardLayer(
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
        (sublayers): ModuleList(
          (0-2): 3 x SublayerConnectionWithNormalization(
            (norm): NormalizationLayer()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
    )
    (norm): NormalizationLayer()
  )
  (source_embedding): Sequential(
    (0): TextEmbeddings(
      (embedding_layer): Embedding(12, 512)
    )
    (1): PositionalEncoding(
      (dropout): Dropout(p=0.1, inplace=False)
    )
  )
  (target_embedding): Sequential(
    (0): TextEmbeddings(
      (embedding_layer): Embedding(12, 512)
    )
    (1): PositionalEncoding(
      (dropout): Dropout(p=0.1, inplace=False)
    )
  )
  (generator): TransformerOutput(
    (linear): Linear(in_features=512, out_features=12, bias=True)
  )
)

 

 

  • 21
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,下面是使用Python实现Transformer模型的代码。在这里,我们使用PyTorch框架来实现Transformer模型。 首先,我们导入必要的库: ```python import torch import torch.nn as nn import torch.nn.functional as F ``` 接下来,我们定义一些常量: ```python MAX_LEN = 512 # 最大序列长度 NUM_HEADS = 8 # 多头注意力的头数 NUM_LAYERS = 6 # Transformer的层数 D_MODEL = 512 # 模型的维度 D_FF = 2048 # Feedforward层的维度 D_K = D_V = 64 # 注意力机制中K和V的维度 DROP_RATE = 0.1 # Dropout的概率 ``` 然后,我们定义一些辅助函数: ```python def scaled_dot_product_attention(q, k, v, mask=None): scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(k.size(-1)).float()) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) attention = torch.softmax(scores, dim=-1) output = torch.matmul(attention, v) return output def positional_encoding(max_len, d_model): pos = torch.arange(0, max_len).unsqueeze(1) div = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) enc = torch.zeros((max_len, d_model)) enc[:, 0::2] = torch.sin(pos * div) enc[:, 1::2] = torch.cos(pos * div) return enc def get_mask(seq): mask = (seq == 0).unsqueeze(1).unsqueeze(2) return mask ``` 接下来,我们定义Transformer模型: ```python class Transformer(nn.Module): def __init__(self, max_len, num_heads, num_layers, d_model, d_ff, d_k, d_v, drop_rate): super().__init__() self.max_len = max_len self.num_heads = num_heads self.num_layers = num_layers self.d_model = d_model self.d_ff = d_ff self.d_k = d_k self.d_v = d_v self.drop_rate = drop_rate self.embedding = nn.Embedding(self.max_len, self.d_model) self.pos_encoding = positional_encoding(self.max_len, self.d_model) self.encoder_layers = nn.ModuleList([EncoderLayer(self.num_heads, self.d_model, self.d_ff, self.d_k, self.d_v, self.drop_rate) for _ in range(self.num_layers)]) self.decoder_layers = nn.ModuleList([DecoderLayer(self.num_heads, self.d_model, self.d_ff, self.d_k, self.d_v, self.drop_rate) for _ in range(self.num_layers)]) self.fc = nn.Linear(self.d_model, self.max_len) def forward(self, src, tgt): src_mask = get_mask(src) tgt_mask = get_mask(tgt) src_emb = self.embedding(src) * torch.sqrt(torch.tensor(self.d_model).float()) tgt_emb = self.embedding(tgt) * torch.sqrt(torch.tensor(self.d_model).float()) src_emb += self.pos_encoding[:src.size(1), :].unsqueeze(0) tgt_emb += self.pos_encoding[:tgt.size(1), :].unsqueeze(0) src_output = src_emb tgt_output = tgt_emb for i in range(self.num_layers): src_output = self.encoder_layers[i](src_output, src_mask) tgt_output = self.decoder_layers[i](tgt_output, src_output, tgt_mask, src_mask) output = self.fc(tgt_output) return output ``` 接下来,我们定义Encoder层和Decoder层: ```python class EncoderLayer(nn.Module): def __init__(self, num_heads, d_model, d_ff, d_k, d_v, drop_rate): super().__init__() self.self_attention = nn.MultiheadAttention(d_model, num_heads, dropout=drop_rate) self.norm1 = nn.LayerNorm(d_model) self.feedforward = nn.Sequential( nn.Linear(d_model, d_ff), nn.ReLU(), nn.Dropout(drop_rate), nn.Linear(d_ff, d_model), nn.Dropout(drop_rate) ) self.norm2 = nn.LayerNorm(d_model) def forward(self, x, mask): self_att_output, _ = self.self_attention(x, x, x, attn_mask=mask) self_att_output = self.norm1(x + self_att_output) ff_output = self.feedforward(self_att_output) output = self.norm2(self_att_output + ff_output) return output class DecoderLayer(nn.Module): def __init__(self, num_heads, d_model, d_ff, d_k, d_v, drop_rate): super().__init__() self.self_attention = nn.MultiheadAttention(d_model, num_heads, dropout=drop_rate) self.norm1 = nn.LayerNorm(d_model) self.encoder_attention = nn.MultiheadAttention(d_model, num_heads, dropout=drop_rate) self.norm2 = nn.LayerNorm(d_model) self.feedforward = nn.Sequential( nn.Linear(d_model, d_ff), nn.ReLU(), nn.Dropout(drop_rate), nn.Linear(d_ff, d_model), nn.Dropout(drop_rate) ) self.norm3 = nn.LayerNorm(d_model) def forward(self, x, encoder_output, tgt_mask, src_mask): self_att_output, _ = self.self_attention(x, x, x, attn_mask=tgt_mask) self_att_output = self.norm1(x + self_att_output) encoder_att_output, _ = self.encoder_attention(self_att_output, encoder_output, encoder_output, attn_mask=src_mask) encoder_att_output = self.norm2(self_att_output + encoder_att_output) ff_output = self.feedforward(encoder_att_output) output = self.norm3(encoder_att_output + ff_output) return output ``` 最后,我们可以使用以下代码来实例化Transformer模型: ```python model = Transformer(MAX_LEN, NUM_HEADS, NUM_LAYERS, D_MODEL, D_FF, D_K, D_V, DROP_RATE) ``` 这就是使用Python实现Transformer模型的全部内容。 ### 回答2: transformer模型是一种用于序列到序列(sequence-to-sequence)任务的深度学习模型,最初应用于机器翻译任务。下面是用Python实现transformer模型的基本步骤: 步骤一:导入必要的库 - 导入tensorflow库 - 导入tensorflow的高级API——keras库 - 导入numpy库 步骤二:定义transformer模型结构 - 定义输入层,通过Input函数指定输入的shape - 定义位置编码器(Positional Encoding),通过Lambda函数将位置编码添加到输入层中 - 定义多层的Encoder层和Decoder层,其中包括Self-Attention和Feed-Forward神经网络 - 定义输出层,通过Dense函数指定输出的shape 步骤三:定义整体模型 - 将输入层和输出层连接起来,构建模型的开始部分 - 通过连接Encoder层和Decoder构建transformer的主体 - 返回最终的模型 步骤四:定义损失函数和优化器 - 定义损失函数,可以使用交叉熵损失函数 - 定义优化器,如Adam优化器 步骤五:模型的训练和评估 - 加载数据集 - 编译模型,设置损失函数和优化器 - 使用fit函数进行模型的训练,并指定训练的参数,如epochs和batch_size - 使用evaluate函数对模型进行评估,并计算准确率 这样就完成了用Python实现transformer模型的基本步骤。当然,实际应用中还可以对模型进行改进和优化,如添加正则化、调整超参数等。这些步骤只是一个基本的模板,具体的实现还需要根据具体的应用场景和数据集进行调整和修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值