LeetCode刷题--- 摆动序列

本文介绍了如何使用动态规划解决摆动序列问题,通过定义两个状态数组f和g来跟踪子序列的上升和下降趋势,给出了状态转移方程和代码实现,以求解给定整数数组中的最长摆动子序列长度。
摘要由CSDN通过智能技术生成

个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客

个人专栏

力扣递归题

 http://t.csdnimg.cn/yUl2I

【C++】    

​​​​​​http://t.csdnimg.cn/6AbpV

数据结构

 ​​​http://t.csdnimg.cn/hKh2l


前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的  

我讲述题目会把讲解部分分为3个部分:
1、题目解析

2、算法原理思路讲解

3、代码实现


摆动序列

题目链接:摆动序列

题目

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

进阶:你能否用 O(n) 时间复杂度完成此题?


解法

算法原理解析

我们这题使用动态规划,我们做这类题目可以分为以下五个步骤

  1. 状态显示
  2. 状态转移方程
  3. 初始化(防止填表时不越界)
  4. 填表顺序
  5. 返回值
  • 状态显示
dp[i] 表示 「以 i 位置为结尾的最⻓摆动序列的⻓度」。

但是,问题来了,如果状态表⽰这样定义的话,以 i 位置为结尾的最⻓摆动序列的⻓度我们没法从之前的状态推导出来。因为我们不知道前⼀个最⻓摆动序列的结尾处是递增的,还是递减的。因 此,我们需要状态表⽰能表⽰多⼀点的信息:要能让我们知道这⼀个最⻓摆动序列的结尾是递增的还是递减的。

解决的方式很简单创建两个 dp 表就好了。
  1. f[i] 表⽰:以 i 位置元素为结尾的所有的⼦序列中,最后⼀个位置呈现「上升趋势」的最⻓摆 动序列的⻓度;
  2. g[i] 表⽰:以 i 位置元素为结尾的所有的⼦序列中,最后⼀个位置呈现「下降趋势」的最⻓摆 动序列的⻓度
  • 状态转移方程
由于子序列的构成比较特殊, i 位置为结尾的⼦序列,前⼀个位置可以是 [0, i - 1] 的任意
位置,因此设 j [0, i - 1] 区间内的某⼀个位置。 对于 f[i] ,我们可以根据「子序列的构成⽅式」,进⾏分类讨论
  1. 子序列长度为 1 :只能⾃⼰玩了,此时 f[i] = 1
  2. 子序列长度⼤于 1 :因为结尾要呈现上升趋势,因此需要 nums[j] < nums[i] 。在满足这个条件下, j 结尾需要呈现下降状态,最长的摆动序列就是 g[j] + 1
综上, f[i] = max(g[j] + 1, f[i]) 。
同理可得
  1. f[i] = max(g[j] + 1, f[i])
  2. g[i] = max(f[j] + 1, g[i])
  • 初始化(防止填表时不越界)
所有的元素「单独」都能构成⼀个摆动序列,因此可以将 dp 表内所有元素初始化为 1
  • 填表顺序

根据「状态转移⽅程」易得,填表顺序为「从左往右」。

  • 返回值

应该返回「两个 dp 表⾥⾯的最⼤值」,我们可以在填表的时候,顺便更新⼀个「最⼤值」。


代码实现 

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) 
    {
        int n = nums.size();

        // 状态显示
        vector<int> f(n + 1, 1);			// 以i为结尾,呈上升趋势的摆动子序列
        vector<int> g(n + 1, 1);			// 以i为结尾,呈下降趋势的摆动子序列

        int ans = 1;						// 最长的摆动子序列
        // 填表
        for (int i = 1; i < n; i++)
        {
            for (int j = 0; j < i; j++)
            {
                if (nums[j] < nums[i])
                {
                    f[i] = max(g[j] + 1, f[i]);
                }
                else if (nums[j] > nums[i])
                {
                    g[i] = max(f[j] + 1, g[i]);
                }
                ans = max(ans, max(f[i], g[i]));
            }
        }
        // 返回
        return ans;
    }
};

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-元清-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值