个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客
个人专栏
力扣递归题
【C++】
http://t.csdnimg.cn/6AbpV
数据结构
前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的
我讲述题目会把讲解部分分为3个部分:
1、题目解析
2、算法原理思路讲解
3、代码实现
摆动序列
题目链接:摆动序列
题目
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。 - 相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5] 输出:6 解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8] 输出:7 解释:这个序列包含几个长度为 7 摆动序列。 其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9] 输出:2
提示:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
进阶:你能否用 O(n)
时间复杂度完成此题?
解法
算法原理解析
我们这题使用动态规划,我们做这类题目可以分为以下五个步骤
- 状态显示
- 状态转移方程
- 初始化(防止填表时不越界)
- 填表顺序
- 返回值
- 状态显示
但是,问题来了,如果状态表⽰这样定义的话,以 i 位置为结尾的最⻓摆动序列的⻓度我们没法从之前的状态推导出来。因为我们不知道前⼀个最⻓摆动序列的结尾处是递增的,还是递减的。因 此,我们需要状态表⽰能表⽰多⼀点的信息:要能让我们知道这⼀个最⻓摆动序列的结尾是递增的还是递减的。
- f[i] 表⽰:以 i 位置元素为结尾的所有的⼦序列中,最后⼀个位置呈现「上升趋势」的最⻓摆 动序列的⻓度;
- g[i] 表⽰:以 i 位置元素为结尾的所有的⼦序列中,最后⼀个位置呈现「下降趋势」的最⻓摆 动序列的⻓度
- 状态转移方程
- 子序列长度为 1 :只能⾃⼰玩了,此时 f[i] = 1 ;
- 子序列长度⼤于 1 :因为结尾要呈现上升趋势,因此需要 nums[j] < nums[i] 。在满足这个条件下, j 结尾需要呈现下降状态,最长的摆动序列就是 g[j] + 1 。
- f[i] = max(g[j] + 1, f[i])
- g[i] = max(f[j] + 1, g[i])
- 初始化(防止填表时不越界)
- 填表顺序
根据「状态转移⽅程」易得,填表顺序为「从左往右」。
- 返回值
应该返回「两个 dp 表⾥⾯的最⼤值」,我们可以在填表的时候,顺便更新⼀个「最⼤值」。
代码实现
class Solution {
public:
int wiggleMaxLength(vector<int>& nums)
{
int n = nums.size();
// 状态显示
vector<int> f(n + 1, 1); // 以i为结尾,呈上升趋势的摆动子序列
vector<int> g(n + 1, 1); // 以i为结尾,呈下降趋势的摆动子序列
int ans = 1; // 最长的摆动子序列
// 填表
for (int i = 1; i < n; i++)
{
for (int j = 0; j < i; j++)
{
if (nums[j] < nums[i])
{
f[i] = max(g[j] + 1, f[i]);
}
else if (nums[j] > nums[i])
{
g[i] = max(f[j] + 1, g[i]);
}
ans = max(ans, max(f[i], g[i]));
}
}
// 返回
return ans;
}
};