【数学竞赛】初学者必看,重要极限及等价无穷小的易错点

废话不多说,直接上题:

0124622ce9a64e47bf092986e09c2782.png

这是一道2009年北京市的竞赛真题,对于大一高数没认真学的我来说,做起来真的是一波三折啊。

易错点1:

由于在做遇到这道题之前,我接连刷了好几道用到重要极限的题,所以当时第一眼想到的便是0f23f4c00f2648e0a5aab18db3dbadbb.png这一重要极限。

照这个思路做下去会有如下结果:

8491f28a6772495997fdf4449efd14b7.png

当时心想:哈!稳啦,竞赛题这么简单,这不轻轻松松拿省一?

但当查阅答案后我傻眼了:啊?为啥错?思路无懈可击呀!

经过我的不断求知(问AI),终于发现了问题所在:

在这个重要极限中,作为指数的n是趋于无穷大的。如果n乘以一个常数还好,但n的平方的增长速度是非常快的,不能仅仅依据7c2d65c6685f42e99244e4d4a24ca235.png来判断整个表达式的极限!!!

所以,此思路PASS。

 

易错点2:

紧接着我便考虑使用取对数这一思路:

71517b48f3744e69a18a67e51594ab98.png

打眼一瞧,立马想到了b39fb835465d4410b475013806673691.png这一等价无穷小,于是就有了有如下步骤:

ed60de5c364245eb847256e5d90a77ae.png

嗯???怎么还是1???又是哪里出错啦?

看完解释之后,我承认我需要去治一下眼睛了:所有等价无穷小都有一个前置条件x→0,而题目中是趋于无穷,因此不能使用等价无穷小!!!

万恶的定义,再也不敢顾头不顾腚了~~~

 

正确步骤:

那么要处理ln(1+x)这个式子,只能使用泰勒展开了:

960906dd985648aca1687d21f2dd08fc.png

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值