废话不多说,直接上题:
这是一道2009年北京市的竞赛真题,对于大一高数没认真学的我来说,做起来真的是一波三折啊。
易错点1:
由于在做遇到这道题之前,我接连刷了好几道用到重要极限的题,所以当时第一眼想到的便是这一重要极限。
照这个思路做下去会有如下结果:
当时心想:哈!稳啦,竞赛题这么简单,这不轻轻松松拿省一?
但当查阅答案后我傻眼了:啊?为啥错?思路无懈可击呀!
经过我的不断求知(问AI),终于发现了问题所在:
在这个重要极限中,作为指数的n是趋于无穷大的。如果n乘以一个常数还好,但n的平方的增长速度是非常快的,不能仅仅依据来判断整个表达式的极限!!!
所以,此思路PASS。
易错点2:
紧接着我便考虑使用取对数这一思路:
打眼一瞧,立马想到了这一等价无穷小,于是就有了有如下步骤:
嗯???怎么还是1???又是哪里出错啦?
看完解释之后,我承认我需要去治一下眼睛了:所有等价无穷小都有一个前置条件x→0,而题目中是趋于无穷,因此不能使用等价无穷小!!!
万恶的定义,再也不敢顾头不顾腚了~~~
正确步骤:
那么要处理ln(1+x)这个式子,只能使用泰勒展开了: