题目
一、题目分析
此题主要用到字符串与栈(先进者后出)的数据结构进行题目解答。
二、题目解答
判断括号的有效性可以使用[栈]这一数据结构来解决我们遍历给定的字符串 。当我们遇到一个左括号时,我们会期望在后续的遍历中,有一个相同类型的右括号将其 闭合,由于后遇到的左括号要先闭合,因此我们可以将这个左括号放入栈顶。
当我们遇到一个右括号时,我们需要将一个相同类型的左括号闭合。此时,我们可以取出栈顶的左括号并判断它们是否是相同类型的括号。如果不是相同的类型,或者栈中并没有左括号,那么字符串 。无效,返回False。为了快速判断括号的类型,我们可以使用哈希表存储每一种括号。哈希表的键为右括号,值为相同类型的左括号。
在遍历结束后,如果栈中没有左括号,说明我们将字符串中的所有左括号闭合,返回 True,否则返回False。
省去后续的注意到有效字符串的长度一定为偶数,因此如果字符串的长度为奇数,我们可以直接返回 False,遍历判断过程。
char pairs(char a) {//用哈斯表存储可能出现的所有键值对
if (a == '}') return '{';
if (a == ']') return '[';
if (a == ')') return '(';
return 0;
}
bool isValid(char* s) {
int n = strlen(s);
if (n % 2 == 1) {//长度为奇数直接排除
return false;
}
int stk[n + 1], top = 0;
for (int i = 0; i < n; i++) {
char ch = pairs(s[i]);
if (ch) {
if (top == 0 || stk[top - 1] != ch) {//栈内为空或栈顶的左括号不匹配
return false;
}
top--;//出栈
} else {
stk[top++] = s[i];//右括号入栈
}
}
return top == 0;//判断栈内是否还有左括号,有剩余则不等于0,返回false,否则返回true
}
三、复杂度分析
时间复杂度:O(n),其中 n 是字符串 s 的长度。
空间复杂度:O(n+∣Σ∣),其中 Σ 表示字符集,本题中字符串只包含 6种括号,∣Σ∣=6|。栈中的字符数量为 O(n),而哈希表使用的空间为 O(∣Σ∣),相加即可得到总空间复杂度。