本研究基于2017年世界武术锦标赛的数据集,通过对运动员的动作质量、整体表现评估和难度得分等多个维度进行综合分析,旨在揭示运动员在比赛中的特长、性别差异、地区差异等方面的特征。通过Python编程语言中的Pandas和Matplotlib库进行数据清理、分析和可视化,我们得出了一系列有关参赛运动员表现的重要结论。
武术作为一项高度技术化的竞技运动,涉及到运动员在运动质量、整体表现和难度方面的综合能力。2017年的世界武术锦标赛提供了一个丰富的数据集,为深入了解运动员表现提供了机会。在通过对比分析,揭示运动员的特长、性别和地区差异。
方法: 我们使用Pandas库对原始数据进行清理和处理,提取了关键指标如运动员得分、排名、时间等。利用Matplotlib库进行数据可视化,展示了不同方面的分布和趋势。通过比较不同指标,我们揭示了运动员在不同方面的表现。
具体代码如下:
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据集
data = pd.read_csv('/home/aistudio/data/data107360/WWC17.csv')
# 1. 国家分布
country_distribution = data.groupby('Country')['Overall_Score'].mean().sort_values(ascending=False)
country_distribution.plot(kind='bar', figsize=(10, 6))
plt.title('Average Overall Score by Country')
plt.xlabel('Country')
plt.ylabel('Average Ov