基于深度学习的苹果图像识别-文献阅读
apple fruitlet detection (2021)
YOLO V5s-based deep learning
abstract
目标:develop an accurate apple fruitlet detection method with small model size based on a channel pruned YOLO V5s deep learning algorithm.
key method:
1 模型迁移
using transfer learning, a YOLO V5s detection model was built to detect apple fruitlets.
2 简化模型
To simplify the detection model and ensure the detection efficiency, a channel pruning algorithm was used to prune the YOLO V5s model.
用channel pruning algorithm简化模型,在深度学习模型中,每个通道都对应着一个特征图(feature map),去掉对模型贡献不大的通道,减少参数和计算量,提高推理速度
模型效果
A recall, precision, F1 score, and false detection rate of 87.6%, 95.8%, 91.5% and 4.2%, respectively, were achieved; the average detection time was 8 ms per image; and the model size was only 1.4 MB.
要区分直射光 direct sunlight和背光 backlight, 并记录当天天气光照情况,作为参数
框架:采集图像、标记、训练、优化—简化通道算法进行优化
准确性测试,用不同天气和光照的图片测试准确率
简化后和优化后的模型比较,在保证准确度的基础上提高速度
比较不同模型效果:准确率、大小、速度、参数数量
比较有无数据增强的数据集训练出的YOLO V5模型
tips:
准确率(accuracy)、precision 预测精度 、recall 召回率 、f1-score的关系
准确率(accuracy)=(TP+TN)/(TP+FN+FP+TN)
精确率(precision)=TP/(TP+FP)
你认为的正样本中,有多少是真的正确的概率
召回率(recall)=TP/(TP+FN)
找出的正样本占真实正样本的比例
F1score
最后:The network model was effectively simplified in this work; and in the future, we will focus on improving the apple fruitlet detection accuracy.
思考
相比于准确度,应用上减少内存消耗,提高速率很重要,模型要提高速率,简化参数,保证准确度
原文:Dandan Wang, Dongjian He. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning
https://www.sciencedirect.com/science/article/pii/S1537511021001999
DOI:10.1016/j.biosystemseng.2021.08.015