自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 坚果云markdown

markdown文档PC 平板同步

2024-03-05 16:30:19 620 1

原创 深度学习论文阅读路线图 github资源

资源记录。

2024-01-02 16:03:36 383 1

原创 windows下载安装pandoc用于导出typora

1 github下载https://github.com/jgm/pandoc/releases/tag/3.1.11。5 在typora左上角文件-导出 选择格式导出,如果不成功检查pandoc路径是否正确,选择正确的路径。6 可在 文件-导出-导出设置进行导出偏好设置,设置导出文件的存放位置等。

2024-01-02 15:29:45 950 1

原创 无人机使用

精灵4RTK无人机使用笔记和教程资源

2023-12-29 15:43:20 492 1

原创 小问题解决

小白在Linux环境配置和运行YOLOV5的时候遇到的各种小错误,有基础的不用看

2023-12-17 22:54:21 175 1

原创 过拟合和欠拟合、模型容量

李沐深度学习笔记

2023-12-17 22:27:36 43 1

原创 多层感知机 MLP与激活函数

多层感知机 MLP,使用很多,可以改成别的。SVM算法又称为支持向量机, 用起来更简单,MLP代码和深度学习CNN、RNN差别不多感知机是一个二分类模型,相当于一次梯度下降。

2023-12-17 22:21:05 155 1

原创 丢弃法和数值稳定性

丢弃法将一些输出项随机置0来控制模型复杂度常作用在多层感知机的隐藏层输出上丢弃概率是控制模型复杂度的超参数数值稳定性。

2023-12-17 22:13:10 45 1

原创 鲁棒性、误差、仿射变换、k折交叉验证概念

鲁棒性在计算机系统和算法设计中非常重要,因为现实世界中的数据往往是不完美的、存在噪声的。在机器学习中,鲁棒性是指模型对于输入数据中的噪声、离群值或其他干扰因素的处理能力。一个鲁棒的系统能够在面对不同的输入、数据干扰或错误时保持良好的性能。它能够处理不完美或不符合预期的输入,并产生合理的输出结果,而不会崩溃或产生严重的错误。在没有足够多的数据使用,将数据分成K块,第i个做验证数据集,其他做训练数据集,然后做平均,常用k是5/10,比较贵。,类似未来的考试,所以每个测试数据集的类都要有相应的验证数据集。

2023-12-03 15:10:49 121 1

转载 为什么线性模型不能用于图像分类?多个隐藏层和卷积的作用

用线性模型通过单个像素的值来分类,任何像素值的增大或减小都会造成输出值的增大或减小,显然不能实现分类。需要考虑像素之间的相互关系,这时就运用到卷积核,通过不同大小和数量的卷积核反应不同尺度的特征。

2023-12-03 15:02:27 60 1

原创 信息论 比特和纳特

信息论 比特和纳特信息论的基本定理之一指出,为了对从分布P中随机抽取的数据进行编码, 我们至少需要H[P]“纳特(nat)”对其进行编码。“纳特”相当于比特(bit),但是对数底为e而不是2。因此,一个纳特是1log⁡(2)≈1.44比特。纳特使用自然对数,而比特使用以2为底的对数。用纳特作为单位进行编码时,相比使用比特,可以更精确地表示数据的信息量,因为自然对数e的性质使得纳特提供了更高的信息表达能力。

2023-11-28 15:32:20 657

原创 光与图像识别

光对识别的影响

2023-11-25 20:38:00 51

原创 批量大小、学习率、num_epochs之间的关系是怎样的

批量大小、学习率、迭代次数的关系,以及训练的总样本数

2023-11-16 22:07:08 673 1

原创 apple fruitlet detection (2021)苹果图像识别

基于深度学习的苹果识别文献笔记develop an accurate apple fruitlet detection method with small model size based on a channel pruned YOLO V5s deep learning algorithm

2023-11-03 11:59:14 82 1

原创 如何看文献 人工智能机器学习论文

首先看标题,然后看摘要和图,图中和图注会有很多关键的信息,然后仔细阅读介绍、结论、数字,再浏览剩下的。然后看结论,摘要和结论部分一般会写的通俗易懂,而且包含很多关键信息。跳过不重要的部分,论文内容会有很多不太相关的信息,没必要全看。刚开始看的时候不用太关注数学部分,而要关注信息密集的关键部分。

2023-10-26 10:57:26 63

原创 Matplotlib绘图

matplotlib.pyplot绘制散点图

2023-10-26 10:15:30 93

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除