- 博客(16)
- 收藏
- 关注
原创 windows下载安装pandoc用于导出typora
1 github下载https://github.com/jgm/pandoc/releases/tag/3.1.11。5 在typora左上角文件-导出 选择格式导出,如果不成功检查pandoc路径是否正确,选择正确的路径。6 可在 文件-导出-导出设置进行导出偏好设置,设置导出文件的存放位置等。
2024-01-02 15:29:45 950 1
原创 多层感知机 MLP与激活函数
多层感知机 MLP,使用很多,可以改成别的。SVM算法又称为支持向量机, 用起来更简单,MLP代码和深度学习CNN、RNN差别不多感知机是一个二分类模型,相当于一次梯度下降。
2023-12-17 22:21:05 155 1
原创 鲁棒性、误差、仿射变换、k折交叉验证概念
鲁棒性在计算机系统和算法设计中非常重要,因为现实世界中的数据往往是不完美的、存在噪声的。在机器学习中,鲁棒性是指模型对于输入数据中的噪声、离群值或其他干扰因素的处理能力。一个鲁棒的系统能够在面对不同的输入、数据干扰或错误时保持良好的性能。它能够处理不完美或不符合预期的输入,并产生合理的输出结果,而不会崩溃或产生严重的错误。在没有足够多的数据使用,将数据分成K块,第i个做验证数据集,其他做训练数据集,然后做平均,常用k是5/10,比较贵。,类似未来的考试,所以每个测试数据集的类都要有相应的验证数据集。
2023-12-03 15:10:49 121 1
转载 为什么线性模型不能用于图像分类?多个隐藏层和卷积的作用
用线性模型通过单个像素的值来分类,任何像素值的增大或减小都会造成输出值的增大或减小,显然不能实现分类。需要考虑像素之间的相互关系,这时就运用到卷积核,通过不同大小和数量的卷积核反应不同尺度的特征。
2023-12-03 15:02:27 60 1
原创 信息论 比特和纳特
信息论 比特和纳特信息论的基本定理之一指出,为了对从分布P中随机抽取的数据进行编码, 我们至少需要H[P]“纳特(nat)”对其进行编码。“纳特”相当于比特(bit),但是对数底为e而不是2。因此,一个纳特是1log(2)≈1.44比特。纳特使用自然对数,而比特使用以2为底的对数。用纳特作为单位进行编码时,相比使用比特,可以更精确地表示数据的信息量,因为自然对数e的性质使得纳特提供了更高的信息表达能力。
2023-11-28 15:32:20 657
原创 apple fruitlet detection (2021)苹果图像识别
基于深度学习的苹果识别文献笔记develop an accurate apple fruitlet detection method with small model size based on a channel pruned YOLO V5s deep learning algorithm
2023-11-03 11:59:14 82 1
原创 如何看文献 人工智能机器学习论文
首先看标题,然后看摘要和图,图中和图注会有很多关键的信息,然后仔细阅读介绍、结论、数字,再浏览剩下的。然后看结论,摘要和结论部分一般会写的通俗易懂,而且包含很多关键信息。跳过不重要的部分,论文内容会有很多不太相关的信息,没必要全看。刚开始看的时候不用太关注数学部分,而要关注信息密集的关键部分。
2023-10-26 10:57:26 63
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人