过拟合和欠拟合、模型容量

如简单的数据用很深的模型会造成过拟合,泛化性不足;如果复杂的数据用不够深的模型,训练不好,精度不好

估计模型容量

难以在不同种类算法间比较,如树模型和神经网络;同种类模型可比较容量

随机森林和神经网络区别很大

VC维-线性分类器

2维输入的感知机,VC维=3,能够分类任何三个点,但不是4个(xor)

这个4个点的图显示了为什么单层的感知机处理不了xor问题,需要隐藏层,两条线

支持N维输入的感知机的VC维是N+1

VC维衡量训练误差和泛化误差之间的间隔,但是深度学习中很少使用,计算深度学习的VC维很困难

衡量数据复杂度

样本个数、每个样本的元素个数;时间空间结构、多样性

但是相对的

总结
  • 模型容量需匹配数据复杂度,否则可能导致欠拟合、过拟合

  • 统计机器学习提供数学工具衡量模型复杂度

  • 实际中一般靠观察训练误差、测试误差判断

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值