如简单的数据用很深的模型会造成过拟合,泛化性不足;如果复杂的数据用不够深的模型,训练不好,精度不好
估计模型容量
难以在不同种类算法间比较,如树模型和神经网络;同种类模型可比较容量
随机森林和神经网络区别很大
VC维-线性分类器
2维输入的感知机,VC维=3,能够分类任何三个点,但不是4个(xor)
这个4个点的图显示了为什么单层的感知机处理不了xor问题,需要隐藏层,两条线
支持N维输入的感知机的VC维是N+1
VC维衡量训练误差和泛化误差之间的间隔,但是深度学习中很少使用,计算深度学习的VC维很困难
衡量数据复杂度
样本个数、每个样本的元素个数;时间空间结构、多样性
但是相对的
总结
-
模型容量需匹配数据复杂度,否则可能导致欠拟合、过拟合
-
统计机器学习提供数学工具衡量模型复杂度
-
实际中一般靠观察训练误差、测试误差判断