[洛谷刷题5]

P10909 [蓝桥杯 2024 国 B] 立定跳远(二分)

https://www.luogu.com.cn/problem/P10909

题目描述

在运动会上,小明从数轴的原点开始向正方向立定跳远。项目设置了 n n n 个检查点 a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots , a_n a1,a2,,an a i ≥ a i − 1 > 0 a_i \ge a_{i−1} > 0 aiai1>0。小明必须先后跳跃到每个检查点上且只能跳跃到检查点上。同时,小明可以自行再增加 m m m 个检查点让自己跳得更轻松。

在运动会前,小明制定训练计划让自己单次跳跃的最远距离达到 L L L,并且学会一个爆发技能可以在运动会时使用一次,使用时可以在该次跳跃时的最远距离变为 2 L 2L 2L。小明想知道, L L L 的最小值是多少可以完成这个项目?

输入格式

输入共 2 2 2 行。

第一行为两个正整数 n , m n,m n,m

第二行为 n n n 个由空格分开的正整数 a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots, a_n a1,a2,,an

输出格式

输出共 1 1 1 行,一个整数表示答案。

输入输出样例 #1

输入 #1

5 3
1 3 5 16 21

输出 #1

3

说明/提示

【样例说明】

增加检查点 10 , 13 , 19 10, 13, 19 10,13,19,因此每次跳跃距离为 1 , 2 , 2 , 5 , 3 , 3 , 3 , 2 1,2, 2, 5, 3, 3, 3, 2 1,2,2,5,3,3,3,2,在第三次跳跃时使用技能即可。

【评测用例规模与约定】

对于 20 % 20\% 20% 的评测用例,保证 n ≤ 1 0 2 n \le 10^2 n102 m ≤ 1 0 3 m \le 10^3 m103 a i ≤ 1 0 3 a_i \le 10^3 ai103
对于 100 % 100\% 100% 的评测用例,保证 2 ≤ n ≤ 1 0 5 2 \le n \le 10^5 2n105 m ≤ 1 0 8 m \le 10^8 m108 0 < a i ≤ 1 0 8 0 < a_i \le 10^8 0<ai108

解题思路

考虑如何判断一个跳跃距离 L L L(不要求最小)是否可以完成这个项目

我们设第 n − 1 n-1 n1 个检查点与第 n n n 个检查点之间的距离为 s n s_n sn,若:

  • s n ≤ L s_n \leq L snL,则小明可以直接从第 n − 1 n-1 n1 个检查点跳到第 n n n 个检查点;
  • s n > L s_n > L sn>L s n ≤ ( t + 1 ) L s_n \leq (t+1)L sn(t+1)L,则小明需要增加 t t t 个额外检查点,以从第 n − 1 n-1 n1 个检查点跳到第 n n n 个检查点。

可用的额外检查点有多少个? m + 1 m+1 m+1 个。因为,使用一次“爆发技能”其实和一个额外检查点的效果等同。

将指定 L L L 需要的额外检查点数目累加。如果该数目小于 m + 1 m+1 m+1,则可以认为该 L L L 是可以完成这个项目的。

以上过程的时间复杂度为 O ( n ) O(n) O(n)

考虑如何找出符合条件的最小 L L L

注意到若设可以完成这个项目的最小 L L L 值为 L min ⁡ L_{\min} Lmin,则当 L > L min ⁡ L > L_{\min} L>Lmin 时,也一定可以完成这个项目;当 L < L min ⁡ L < L_{\min} L<Lmin 时,一定不可以完成这个项目。

我们可以用二分查找的方式找到那个最小的 L L L

假设我们已知 L min ⁡ L_{\min} Lmin 的范围为 l ≤ L min ⁡ ≤ r l \leq L_{\min} \leq r lLminr。令 m i d = l + r 2 mid = \frac{l + r}{2} mid=2l+r,若:

  • L = m i d L = mid L=mid 时可以完成这个项目。此时 L min ⁡ L_{\min} Lmin 的范围缩小至 l ≤ L min ⁡ ≤ m i d l \leq L_{\min} \leq mid lLminmid
  • L = m i d L = mid L=mid 时不可以完成这个项目。此时 L min ⁡ L_{\min} Lmin 的范围缩小至 m i d + 1 ≤ L min ⁡ ≤ r mid + 1 \leq L_{\min} \leq r mid+1Lminr

当范围最终缩小到一个确定的数时,此时 l l l r r r 的值即为 L min ⁡ L_{\min} Lmin 的值。

AC Code
#include <bits/stdc++.h>
using namespace std;

const int N = 1e5+9;
int a[N], n, m;
  
bool check(int x) {
    int cnt = 0;
    for (int i = 1; i <= n; i++) {
        int dis = a[i] - a[i - 1];
        if (dis <= x){
            continue;
        }
        cnt += (int)ceil(1.0 * dis / x) - 1;
        if (cnt > m) {
            return false;
        }
    }
    return true;
}

int main() {
    cin >> n >> m;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
    }
    m++;
    int l = 1, r = a[n], res = -1;
    while(l <= r) {
        int mid = (l + r) >> 1;
        if (check(mid)){
            r = mid - 1, res = mid;
        }
        else {
            l = mid + 1;
        }
    }
    cout << res;
    return 0;
}

P10424 [蓝桥杯 2024 省 B] 好数

https://www.luogu.com.cn/problem/P10424

题目描述

一个整数如果按从低位到高位的顺序,奇数位(个位、百位、万位……)上的数字是奇数,偶数位(十位、千位、十万位……)上的数字是偶数,我们就称之为“好数”。

给定一个正整数 N N N,请计算从 1 1 1 N N N 一共有多少个好数。

输入格式

一个整数 N N N

输出格式

一个整数代表答案。

输入输出样例 #1

输入 #1

24

输出 #1

7

输入输出样例 #2

输入 #2

2024

输出 #2

150

说明/提示

样例 1 解释

24 24 24 以内的好数有 1 , 3 , 5 , 7 , 9 , 21 , 23 1,3,5,7,9,21,23 1,3,5,7,9,21,23,一共 7 7 7 个。

数据规模与约定

  • 对于 10 % 10\% 10% 的测试数据, 1 ≤ N ≤ 100 1 \leq N \le 100 1N100
  • 对于全部的测试数据, 1 ≤ N ≤ 1 0 7 1 \le N \leq 10^7 1N107

解题思路

直接对1-n内的每一个数字进行判断即可,若奇数位为偶数或者偶数位为奇数则返回false,全部位置判断完毕则返回true

AC Code
#include <bits/stdc++.h>
using namespace std;

bool check(int num){
    int i=1;
    while(num){
        int tmp = num%10;
        if(i){
            if(tmp%2==0){
                return false;
            }
        }
        else {
            if(tmp%2){
                return false;
            }
        }
        i^=1;
        num/=10;
    }
    return true;
}

int main(){
    ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);

    int n;
    cin >> n;
    int res = 0;
    for(int i=1;i<=n;i++){
        if(check(i)){
            res++;
        }
    }
    cout << res;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Almond_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值