自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(165)
  • 收藏
  • 关注

原创 计算机组成与体系结构:补码数制二(Complementary Number Systems)

任何计算超出这个范围,就“回绕”回来。就像时钟是模 12 的系统:我们希望把 A − B 变成 A + something我们的问题是:如何让A − B,变成A +????用模运算思维,我们知道:因为:在模 b^n 意义下,负数 −B 可以表示成 b^n - B所以你只要:不直接做 A − B而是把 B 换成 b’s complement(即 b^n - B),再和 A 相加最后把结果取模(保留低 n 位)你就等价于完成了 A − B 的操作!举个完整例子说明。

2025-06-07 23:48:10 751

原创 计算机组成与体系结构:补码数制一(Complementary Number Systems)

你可以想象一下,如果我们把一台计算机看作一个只会处理“二进制加法”的机器人,那它就不会直接做“减法”或“处理正负号”。那我们该怎么告诉这个机器人该怎么做呢?这就需要一种“编码方法”,能:表示正数和负数 ;让机器人只用加法就能完成加法和减法; 还不容易出错 ;这种方法,就是我们今天要学的 —— 补码数制(Two's Complement System)。 我们学习补码数制的核心原因,是为了解决有符号数(Signed Numbers)在计算机中进行加减运算时所面临的表示和运算复杂性问题。

2025-06-07 21:44:09 935

原创 数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)

本文介绍了如何优化泰勒展开式的递归计算方法。通过分析传统递归方法O(n²)的时间复杂度问题,提出采用霍纳法则进行优化。霍纳法则通过嵌套乘加结构,将计算复杂度降至O(n)。文章详细演示了将泰勒展开式重写为霍纳形式的过程,并给出了对应的迭代和递归实现方案。最后澄清了"循环"与"迭代"的概念区别,指出霍纳法则本质上是一种迭代算法,既可用循环也可用递归实现。这种方法显著提高了泰勒展开的计算效率,特别适用于大n值情况。

2025-06-05 20:59:06 841

原创 数据结构:递归:泰勒展开式(Taylor Series Expansion)

本文摘要:文章从第一性原理出发,推导了用C++递归实现泰勒展开式的方法。通过类比自然数求和递归模式,提出递归计算策略:1)定义基础情况(n=0返回1),2)先递归计算前n-1项和,3)回溯过程中更新分子(x^n)和分母(n!)的状态,4)累加当前项。关键点在于利用全局变量保存状态,并在递归回溯阶段计算当前项,避免重复计算。最终实现了一个高效递归算法,完整呈现了从数学定义到代码实现的推导过程。

2025-06-05 15:17:36 1173

原创 SQL思路解析:窗口滑动的应用

摘要:本文介绍了如何用SQL计算餐馆7天滑动窗口的消费总额和平均值。首先按天汇总消费数据,然后通过自连接(JOIN)创建7天窗口(当前日期+前6天),计算每个窗口的SUM(amount)和ROUND(SUM/7,2)作为平均值。使用HAVING COUNT=7确保窗口完整,并按日期升序排列。这种方法不依赖连续日期数据,比窗口函数更灵活。最终SQL完成7天移动平均分析,满足餐馆营业额变化分析需求。

2025-06-03 20:07:31 776

原创 数据结构:递归:自然数之和

摘要:本文探讨了计算前n个自然数之和S(n)的三种方法。从第一性原理出发,通过递归解法分解问题结构(S(n)=S(n-1)+n)并定义初始条件(S(1)=1),自然生成递归思想。循环解法识别重复操作模式,构建自动控制的重复流程。公式法直接使用数学表达式n(n+1)/2。三种方法的时间复杂度分别为O(n)、O(n)和O(1),空间复杂度分别为O(n)、O(1)和O(1)。作者比较了各方法的优缺点,指出公式法虽高效但可能溢出,递归法有栈溢出风险,循环法则更稳定实用。

2025-06-03 15:49:21 879

原创 数据结构:递归的种类(Types of Recursion)

本文介绍了递归的不同形式及其特性。尾递归的特点是递归调用为函数最后一步操作,可优化为循环以节省栈空间;头递归则是先递归后操作,导致回溯执行。树形递归会产生指数级调用,如斐波那契数列;线性递归则保持单一路径。间接递归通过函数间互相调用实现,而嵌套递归的参数本身就是递归调用。时间复杂度方面,尾递归和循环均为O(n),树形递归高达O(2^n)。空间复杂度上,循环最优(O(1)),递归通常需要O(n)栈空间。文章通过调用树和栈帧变化图解了执行过程,并提供了递归转循环的方法。

2025-06-03 11:03:19 1206

原创 SQL: 窗口滑动(Sliding Window)

滑动窗口分析摘要 滑动窗口是一种动态分析数据范围的技术,分为时间窗口和行窗口两类。 时间窗口以时间单位(如天、小时)定义滑动区间,常用于计算移动平均值(如过去7天销售额)。实现方式包括子查询和自连接,窗口形式包括: 滑动窗口(重叠区间,如每日更新7天均值) 滚动窗口(无重叠,如按天/小时聚合) 会话窗口(用户连续行为划分,如超时断开后重启) 行窗口以固定行数为范围(如前3行均值),通过ROWS BETWEEN语法实现,适用于累计求和或排名。 核心区别:时间窗口(RANGE)基于时间值,行窗口(ROWS)基于

2025-06-02 12:06:42 986

原创 SQL:基本语法总结

表示暂时还未涉及,以后会继续更新。

2025-06-02 11:26:50 94

原创 数据结构:递归(Recursion)

本文通过两个递归示例(先打印后递归 vs 先递归后打印)对比分析了递归的执行流程和栈内存使用。重点解析了递归的两个阶段:调用阶段(Ascending)和返回阶段(Descending),并详细说明了递归调用时栈内存的分配机制。通过时间复杂度(O(n))和空间复杂度(O(n))分析,以及静态变量在递归中的特殊行为(仅初始化一次且共享),深入阐述了递归的工作原理。文中用调用树和内存结构图直观展示了递归的执行过程,强调递归必须包含终止条件的关键特性。

2025-06-01 22:08:47 1237

原创 数据结构:时间复杂度(Time Complexity)和空间复杂度(Space Complexity)

文章摘要:时间复杂度衡量算法运行时间随输入规模的增长趋势,常用大O表示法描述,如O(1)、O(n)、O(n²)等,从常数级到指数级效率递减。它帮助预测算法处理大数据的能力和比较算法效率。空间复杂度则评估算法运行时占用的额外内存空间,同样采用大O表示法。分析时间复杂度需关注循环嵌套层数和递归模式,而空间复杂度考察变量和数据结构的内存使用。通过具体代码示例(如循环、递归、数组操作),可以直观理解不同复杂度级别的特征及其实际意义。(149字)

2025-05-31 21:46:10 1276

原创 计算机组成与体系结构:存储系统总结

2025-05-31 18:31:43 105

原创 数据结构:栈(Stack)和堆(Heap)

《计算机程序内存管理基础》摘要 程序运行时需使用主存存储数据和指令。内存分为代码区(存放机器指令)、栈区(自动管理局部变量和函数调用)和堆区(手动管理动态内存)。静态分配在编译时确定变量大小和位置(如栈变量),动态分配则运行时申请堆内存(需手动释放)。栈遵循先进后出原则,函数调用时创建栈帧(含参数、局部变量和返回地址),函数返回后自动销毁。堆内存需通过new/delete手动管理,否则会导致内存泄漏。典型内存布局中,栈向低地址增长,堆向高地址增长,二者共同构成了程序运行时的内存使用框架。

2025-05-31 17:19:26 1248

原创 C++:参数传递方法(Parameter Passing Methods)

本文摘要: 文章系统介绍了函数参数传递的三种方式:1)值传递(Pass by Value),传递变量副本,安全但不影响原数据;2)地址传递(Pass by Address),通过指针修改原变量,高效但需注意空指针;3)引用传递(Pass by Reference),C++特有机制,语法简洁且高效。同时分析了数组作为函数参数的实现原理(退化为指针)及安全返回数组的方法(堆内存或静态数组)。此外,文章还简要说明了函数和结构体的定义及作用,强调其模块化和数据管理的优势。

2025-05-31 12:13:04 856

原创 C++:指针(Pointers)

指针是存储数据地址的变量,用于间接访问数据。它的核心作用包括:1.访问堆内存,实现动态内存分配(通过malloc/new);2.管理外部资源(如文件、网络等操作系统资源);3.高效参数传递(避免大对象复制,直接修改原数据)。使用指针时需注意:分配后检查非空,使用后及时释放(free/delete),防止内存泄漏。C++推荐使用new/delete代替malloc/free,因其更安全且支持对象构造/析构。指针是实现动态数据结构和资源管理的核心机制。

2025-05-31 10:10:40 688

原创 数据结构:导论

摘要:第一性原理思维强调将问题拆解至基础元素,再构建复杂系统。数据结构是组织数据的框架,旨在高效存储、访问和修改数据。核心指标包括时间/空间复杂度和可扩展性。数据结构分为线性(如数组、链表)和非线性(如树、图)两类,均支持插入、删除等基本操作。数据结构与算法密不可分:前者是存储容器,后者是处理方法。学习数据结构的本质是掌握在时空效率间权衡的思维框架,以优化代码性能与可维护性。

2025-05-30 10:44:28 852

原创 c++:进阶语法总结

本文摘要: C++中阶学习聚焦高级特性与OOP编程,涵盖面向对象核心概念(封装、继承、多态)、智能指针内存管理、STL进阶用法(容器/算法/迭代器)、现代C++特性(11/14/17标准)、异常处理、多线程编程、文件操作及模板编程。重点包括虚函数机制、移动语义、lambda表达式、线程同步技术等,旨在培养编写复杂程序能力,为系统级开发奠定基础。特别注意现代C++在资源管理、并发编程方面的改进,如智能指针解决内存泄漏、std::async简化异步任务等实践要点。

2025-05-29 08:21:23 749

原创 c++:初级语法总结

摘要:本文概述了C++初级阶段的9个核心学习内容,包括基本语法与数据类型、控制结构、函数、数组/字符串、指针/引用、STL基础、结构体/枚举以及动态内存管理。重点强调了变量作用域、输入输出安全、运算符优先级、循环控制、函数参数传递、指针内存管理、STL容器使用等关键概念,并提示了常见错误规避点(如数组越界、内存泄漏)。学习者应掌握基础编程能力,能编写包含控制逻辑和简单数据结构的小型程序,为后续学习奠定基础。(149字)

2025-05-29 08:18:39 757

原创 计算机组成与体系结构:固态硬盘(Solid State Drives)

SSD(固态硬盘)是一种采用闪存芯片存储数据的非易失性存储设备,相比传统机械硬盘(HDD)具有更快读写速度和更高可靠性。主要分为2.5英寸和M.2两种规格:2.5英寸SSD采用SATA3.0接口,最大带宽6Gbps;M.2 SSD则使用PCIe总线和NVMe协议,速度可达3500-14000MB/s。现代SSD普遍采用电荷捕获闪存(CTF)技术,通过控制器实现磨损均衡、垃圾回收等功能。虽然SSD价格较高,但其无机械部件、体积小、速度快等优势使其成为主流存储选择。

2025-05-28 19:48:11 957

原创 硬盘驱动器习题解析

硬盘内圈与外圈记录密度解析 现代硬盘采用固定扇区数设计,导致内外圈存储效率差异:内圈磁道长度短但扇区数与外圈相同,这意味着内圈数据记录密度更高。记录密度按单位长度(Bytes/mm)计算而非面积,因此尽管外圈物理面积更大,存储容量与内圈相同。这种设计使内圈成为限制因素,决定了整盘最大记录密度(=每圈字节数/内圈周长)。高密度要求内圈具备更强的数据压缩和写入能力,影响了硬盘的整体存储效率。同时,转速(RPM)直接影响访问延迟,常见5400-10000RPM规格在性能与功耗间取得平衡。SATA接口通过串行传输和

2025-05-28 19:10:01 735

原创 SQL思路解析:窗口函数该如何使用?

题目要求找出最后一个登上巴士且总重量不超过1000kg的乘客。解决思路是: 按上车顺序(turn)排列乘客 计算累积重量(cumulative_weight) 筛选累积重量≤1000kg的乘客 取其中上车顺序(turn)最大的乘客 SQL解决方案: SELECT person_name FROM ( SELECT person_name, SUM(weight) OVER(ORDER BY turn) AS cumulative_weight, turn FROM Queue ) temp WHERE cu

2025-05-27 19:19:40 1065

原创 计算机组成与体系结构:硬盘驱动器(Hard Disk Drives)

硬盘驱动器(HDD)是一种非易失性的固定存储设备,用于长期保存数据。它由高速旋转的磁盘、磁头臂组件和控制电路组成,通过磁性记录数据。硬盘内部包含多层磁盘(platters),每个盘面分为同心圆的磁道(tracks),相同编号的磁道组成柱面(cylinders),磁道再划分为512字节的扇区(sectors)。硬盘容量=磁道数×每道扇区数×扇区大小。访问时间包括寻道时间(8-12ms)、旋转延迟(转速决定,如7200RPM约4.17ms)和数据传输时间,总访问时间通常为12-16ms。操作系统以4KB页为单位

2025-05-27 16:03:43 688

原创 计算机组成与体系结构:Secondary Memory(二级存储)

Secondary Memory(二级存储),也称为辅存、外存(Auxiliary Storage),是指不直接由CPU访问的非易失性(non-volatile)存储设备。所有的二级存储,又叫辅存(Auxiliary Storage),按是否能拆卸、携带,分为两类:固定辅存和可移动辅存

2025-05-27 10:27:31 973

原创 SQL思路解析:逻辑互斥的数据如何处理?

本文介绍了如何查询2019-08-16时所有产品的价格。主要思路是将问题分为两部分处理:对于有价格变更记录的产品,找出该日期前最后一次变更的价格;对于没有变更记录的产品,使用默认价格10。解决方案通过两条SQL查询实现:第一条查询获取每个产品在2019-08-16或之前的最新价格;第二条查询找出所有变更日期都晚于2019-08-16的产品并赋默认值10。最终使用UNION合并这两个结果集,得到完整的产品价格快照。这种方法清晰地区分了两种产品状态,确保结果准确完整。

2025-05-26 11:29:58 594

原创 SQL:合并查询(UNION)

UNION 是 SQL 中的一个关键字,用于 合并多个 SELECT 查询结果,并去除重复的记录,形成一个新的结果表。重点规则:每个 SELECT 查询的列数量必须一致。每个对应列的数据类型要兼容(如都是字符串、都是数字)。UNION 会自动去除重复行,如果你想保留重复,可以使用 UNION ALL。

2025-05-26 10:55:40 572

原创 SQL:窗口函数(Window Functions)

窗口函数是一类 SQL 函数,在不分组的情况下,可以对查询结果中的某一“窗口”范围内的数据进行计算。不同于聚合函数(如 SUM, AVG),窗口函数不会压缩行,而是为每一行返回一个计算值。

2025-05-22 09:04:46 1110 1

原创 SQL思路解析:聚合函数的巧妙使用

这道题目要求计算在首次登录的第二天再次登录的玩家比率。首先,我们需要找出每个玩家的首次登录日期,然后检查他们是否在首次登录的第二天有登录记录。通过将首次登录日期与活动表进行连接,并使用DATEDIFF函数筛选出符合条件的记录,我们可以统计出在第二天登录的玩家数量。最后,将这个数量除以总玩家数,并四舍五入到小数点后两位,得到所需的比率。使用AVG函数可以更简洁地实现这一计算,因为它直接对布尔值进行平均,避免了手动计算分子和分母的繁琐过程。

2025-05-20 22:54:42 591

原创 计算机组成与体系结构:RAM(随机存取存储器)

RAM(随机存取存储器)是计算机中用于临时存储正在运行的程序和数据的易失性存储器,断电后数据会丢失。RAM的工作原理涉及将程序从硬盘加载到RAM中,临时数据存储在RAM中以确保快速响应,保存时数据写入硬盘,关机后RAM数据清除。DIMM(双列直插式内存模块)是RAM的封装形式,具有双边独立引脚,支持更快的数据传输和更大的容量。RAM主要分为SRAM(静态RAM)和DRAM(动态RAM),其中DRAM是主内存的常见形式。SDRAM(同步动态随机存取存储器)通过同步时钟信号提升效率,而DDR(双倍数据速率SDR

2025-05-20 17:01:27 1129

原创 计算机组成与体系结构:ROM(只读存储器)

主存储器是计算机中直接与CPU通信的内存,用于临时存储运行中的程序和数据,其访问速度远快于外部存储器但容量较小。主存储器主要包括RAM和ROM两类。RAM(随机存取存储器)具有临时性、可读写、易失性和高速的特点,用于存储当前运行的程序和数据,如未保存的Word文档。ROM(只读存储器)则具有只读、非易失性和稳定的特点,用于存储固件如BIOS,确保计算机启动和底层系统的正常运行。固件是嵌入硬件中的软件程序,控制设备的低层功能,如BIOS在计算机启动时进行硬件初始化和自检。BIOS通过加载引导程序(Bootst

2025-05-20 12:17:24 647

原创 计算机组成与体系结构:Directory-Based Protocol(目录式协议)

监听式一致性协议在处理器数量较少时表现良好,但随着核心数量的增加,共享总线的带宽限制和全体监听的压力成为系统扩展的主要瓶颈。为了解决这一问题,引入了目录式协议。目录式协议通过维护一个缓存索引表,精确记录哪些核心拥有数据的缓存副本,从而避免了广播通信,减少了无效通信和能耗。目录式协议支持分布式设计,能够扩展到上百甚至上千个核心,每个节点包含处理器、本地主存、私有缓存和目录模块,通过可扩展的网络进行点对点通信。处理器操作流程包括请求变量、目录处理请求、数据传送和目录更新等步骤,确保数据一致性和高效通信。目录式协

2025-05-20 09:43:26 865

原创 SQL:多列匹配(Multiple-column Matching)

MySQL中的多列匹配是指在查询时同时对多个列进行组合匹配,常见于WHERE子句、IN子句、JOIN条件或索引使用场景。多列匹配的基础形式为SELECT * FROM table WHERE (col1, col2) = ('value1', 'value2');,表示只有当两列同时满足条件时才匹配成功。其应用场景包括多列等值匹配、多列IN匹配、多列JOIN匹配、子查询、EXISTS、UNION组合数据源以及索引优化等。多列匹配在复合主键或唯一约束字段组合中尤为高效,且比AND更具表达力。性能优化方面,建议

2025-05-19 10:52:14 589

原创 计算机组成与体系结构:Snooping-Based Protocols(监听式协议)

监听式协议(Snooping协议)是多核处理器系统中用于维护缓存一致性的关键机制。其核心思想是通过总线广播,使每个处理器的缓存控制器能够“监听”其他处理器的数据请求,从而判断是否需要更新或失效本地缓存副本。该协议主要采用两种写策略:写失效(Write-Invalidate)和写更新(Write-Update)。写失效策略在写操作时使其他缓存副本失效,确保写入核心独占数据,适合写回缓存;写更新策略则在写操作时广播新值,保持所有缓存一致,适合写通缓存。监听式协议通过总线模型实现共享数据的一致性,但可能面临带宽消

2025-05-18 23:20:49 807

原创 计算机组成与体系结构:缓存一致性(Cache Coherence)

在多核处理器系统中,缓存一致性问题是确保多个处理器核心对共享内存数据副本的一致性。当多个核心各自缓存同一内存区域的数据时,一个核心的修改可能导致其他核心仍使用旧数据,引发数据不一致。缓存一致性协议(如Snooping-Based和Directory-Based)通过定义核心间的通信规则和状态管理,来解决这一问题。Snooping-Based协议通过总线广播监听其他核心的操作,适用于小规模系统;而Directory-Based协议则通过中央或分布式目录记录数据块状态,适合大规模系统。这些协议确保在多核环境中,

2025-05-18 15:44:26 1103

原创 Unity:延迟执行函数:Invoke()

在Unity中,Invoke() 是一个用于延迟执行函数的内置方法,适用于简单的延迟需求,如延迟切换场景、播放音效或动画等。其基本用法是通过 Invoke(string methodName, float time) 指定方法名和延迟时间(秒)。例如,可以在角色到达终点后延迟2秒切换场景。Invoke() 的优点是简洁易用,无需额外协程,且支持通过 CancelInvoke() 取消调用。此外,InvokeRepeating() 可用于重复执行函数。然而,Invoke() 也有局限性,如不支持参数传递、不易

2025-05-16 22:50:59 584

原创 Unity:场景管理系统 —— SceneManagement 模块

在Unity开发中,Scene(场景)是游戏的基本构建块,代表游戏的不同关卡、菜单或动画。每个Scene包含游戏对象、组件设置、资源引用和场景布局信息。Unity的SceneManagement模块,特别是SceneManager类,负责场景的加载、卸载和切换。通过SceneManager.LoadScene()方法,开发者可以在不同场景间切换,或重新加载当前场景。例如,实现“游戏角色到达终点后重新加载场景”的功能,可以通过在终点区域设置触发器,并在触发时调用SceneManager.LoadScene()

2025-05-16 22:28:08 1262

原创 SQL易错点:为什么我们总会忽略特殊情况?

在数据分析和算法题中,忽略特殊情况或边界条件是一个常见但致命的问题,导致答案错误或系统崩溃。这种现象源于认知系统偏差,包括对主流程的过度关注、学习材料的不足、时间压力下的策略性忽视以及错误的默认假设。为了系统地避免这类错误,可以采用“五维边界检查法”,通过检查空输入、边界值、异常数据、空/NULL值和非法数学问题,确保逻辑的鲁棒性。通过案例分析,本文展示了如何在实际问题中应用这一方法,并提供了长期提升策略,如模拟测试极端输入和训练异常感知系统,以建立更优秀的思维模型。

2025-05-16 16:16:09 908

原创 SQL:MySQL函数:空值处理函数(NULL Handling Functions)

在MySQL中,NULL表示“未知”或“无值”的状态,不同于数字0或空字符串。处理NULL值时,常用函数包括:IFNULL()用于替换空值为默认值,COALESCE()返回第一个非NULL值,NULLIF()在表达式相等时返回NULL以避免错误,以及ISNULL/ISNOTNULL用于判断值是否为NULL。这些函数在数据库查询中非常有用,例如替换空值、避免除以0错误或筛选空值记录。具体应用场景和示例语句可参考相关技术文章。

2025-05-15 21:07:22 1015

原创 SQL:MySQL函数:条件函数(Conditional Functions)

条件函数是SQL查询中用于根据条件真假返回不同值的函数,常用于逻辑控制、数据筛选和分类处理。常见的MySQL条件函数包括: IF():根据条件返回不同值,如IF(score>=60, '及格', '不及格')。 IFNULL():判断值是否为NULL并返回替代值,如IFNULL(bonus, 0)。 NULLIF():若两表达式相等则返回NULL,如NULLIF(grade, 'F')。 CASE:实现多条件分支判断,如CASE WHEN salary>10000 THEN '高薪' ELSE

2025-05-15 20:56:49 571

原创 计算机组成与体系结构:替换策略(MRU & LRU & PLRU & LFU)

本文介绍了多种缓存替换策略,包括MRU(最近最常使用)、LRU(最近最少使用)、PLRU(伪最近最少使用)和LFU(最少频繁使用)。MRU策略在缓存满时替换最近访问的块,适用于特定访问模式。LRU策略则淘汰最久未使用的块,利用时间局部性原则。PLRU是LRU的近似实现,通过树结构和方向位减少硬件开销,同时接近LRU的效果。LFU策略基于访问频率,淘汰访问次数最少的块,适用于访问热点稳定的场景。每种策略都有其适用场景和优缺点,选择合适的策略可以提高缓存效率和系统性能。

2025-05-15 18:10:43 929

原创 计算机组成与体系结构:替换策略(RR&FIFO&LIFO&Optimal Replacement)

本文介绍了四种常见的缓存替换策略:随机替换(Random Replacement)、先进先出(FIFO)、后进先出(LIFO)和最优替换(Optimal Replacement)。随机替换策略在缓存满时随机选择一个块进行替换,简单但命中率较低;FIFO策略优先淘汰最早进入缓存的数据块,行为确定但可能淘汰频繁使用的数据;LIFO策略则淘汰最近进入的块,违反局部性原则,命中率较差;最优替换策略总是淘汰将来最长时间内不会被访问的块,理论上命中率最高,但无法在实际中实现,通常作为理论基准。这些策略在全相联和组相联映

2025-05-15 11:03:32 750

SQL:MySQL基本语法总结

基本SQL语法总结

2025-06-02

计算机组成与体系结构-存储系统总结

计算机组成与体系结构-存储系统总结

2025-05-31

c++:初级语法总结思维导图

c++:初级语法总结思维导图

2025-05-29

c++:进阶语法总结思维导图

c++:进阶语法总结思维导图

2025-05-29

Cache三种映射机制总结

Cache三种映射机制总结

2025-05-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除