洛谷 P2760 科技庄园(多重背包,二进制优化)

题目链接

https://www.luogu.com.cn/problem/P2760

思路

一个很明显的多重背包问题。

乍一看有两个体积,一个是时间,一个是体力。但时间和体力的消耗是相同的,所以背包的容量为: m i n ( min( min(时间,体力 − 1 -1 1 ) ) )。因为体力不能降为 0 0 0,所以要减一。

每一个物品的消耗是 ( i , j ) (i,j) (i,j) ( 0 , 0 ) (0,0) (0,0)的曼哈顿距离乘以 2 2 2。考虑到最多会有 n 2 × k n^{2} \times k n2×k 1 e 6 1e6 1e6)个物品,我们可以使用多重背包的二进制优化进行求解。

代码

#include <bits/stdc++.h>
using namespace std;
#define int long long
typedef pair<int, int> pii;
const int N = 1e2 + 5, M = 1e4 + 5;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f3f3f3f3f;

int n, m, t, a;
int s[N][N];
vector<int>w, v;
void solve()
{
	cin >> n >> m >> t >> a;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			cin >> s[i][j];
		}
	}
	for (int i = 1, k; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			cin >> k;
			if (k > 0)
			{
				for (int op = 1; op <= k; op <<= 1)
				{
					k -= op;
					w.push_back(s[i][j] * op);
					v.push_back((i + j) * op * 2);
				}
				if (k > 0)
				{
					w.push_back(s[i][j] * k);
					v.push_back((i + j) * k * 2);
				}
			}
		}
	}
	int V = min(t, a - 1);
	vector<int>dp(V + 1, 0);
	for (int i = 0; i < w.size(); i++)
	{
		for (int j = V; j >= v[i]; j--)
		{
			dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
		}
	}
	cout << dp[V] << endl;
}

signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	int test = 1;
	// cin >> test;
	for (int i = 1; i <= test; i++)
	{
		solve();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值