Z变换

  由于 D T F T DTFT DTFT变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入 Z Z Z变换。

定义

  已知序列的 D T F T DTFT DTFT
X ( e j w ) = ∑ n = − ∞ ∞ x [ n ] e − j w n X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn} X(ejw)=n=x[n]ejwn
当序列 x [ n ] x[n] x[n]不满足收敛条件时,我们让 x [ n ] x[n] x[n]乘以 r − n r^{-n} rn使它收敛
∑ n = − ∞ ∞ x [ n ] r − n e − j w n \sum_{n=-\infty}^{\infty}x[n]r^{-n}e^{-jwn} n=x[n]rnejwn
z = r e j w z=re^{jw} z=rejw得到
X ( z ) = ∑ n = − ∞ ∞ x [ n ] z − n X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n} X(z)=n=x[n]zn
对于所有的 z z z上式不一定收敛,所以 Z Z Z变换是有其收敛域,所以在对一个信号进行 Z Z Z变换时,一定要加上它的收敛域,因为对于一些不同的信号,它们的 Z Z Z变换相同,但是它们的收敛域不同。仅仅由 Z Z Z变换的表达式并不能完全的确定原信号,要加上它的收敛域才能完全的确定原信号。

例:求序列 x [ n ] = α n μ [ n ] x[n]=\alpha^n\mu[n] x[n]=αnμ[n] Z Z Z变换。
解:
X ( z ) = ∑ n = 0 ∞ α n z − n = 1 1 − α z − 1 X(z)=\sum_{n=0}^{\infty}\alpha^nz^{-n}=\frac{1}{1-\alpha z^{-1}} X(z)=n=0αnzn=1αz11
要使上式收敛,则必须满足 ∣ α z − 1 ∣ &lt; 1 \vert\alpha z^{-1}\vert&lt;1 αz1<1,即收敛域为 ∣ z ∣ &gt; ∣ α ∣ \vert z\vert&gt;\vert \alpha\vert z>α
所以序列 x [ n ] = α n μ [ n ] x[n]=\alpha^n\mu[n] x[n]=αnμ[n] Z Z Z变换为
X ( z ) = 1 1 − α z − 1 , ∣ z ∣ &gt; ∣ α ∣ X(z)=\frac{1}{1-\alpha z^{-1}},\vert z\vert&gt;\vert \alpha\vert X(z)=1αz11,z>α

例:求序列 x [ n ] = − α n μ [ − n − 1 ] x[n]=-\alpha^n\mu[-n-1] x[n]=αnμ[n1] Z Z Z变换。
解:
X ( z ) = ∑ n = − ∞ − 1 − α n z − n = − ∑ m = 1 ∞ ( α − 1 z ) m = − α − 1 z 1 − α − 1 z = 1 1 − α z − 1 X(z)=\sum_{n=-\infty}^{-1}-\alpha^nz^{-n}=-\sum_{m=1}^{\infty}(\alpha^{-1}z)^{m}=-\frac{\alpha^{-1}z}{1-\alpha^{-1}z}=\frac{1}{1-\alpha z^{-1}} X(z)=n=1αnzn=m=1(α1z)m=1α1zα1z=1αz11
要使上式收敛,则需要满足 ∣ α − 1 z ∣ &lt; 1 \vert\alpha^{-1}z\vert&lt;1 α1z<1,即收敛域为 ∣ z ∣ &lt; ∣ α ∣ \vert z\vert &lt; \vert \alpha \vert z<α
所以序列 x [ n ] = − α n μ [ − n − 1 ] x[n]=-\alpha^n\mu[-n-1] x[n]=αnμ[n1] Z Z Z变换为
X ( z ) = 1 1 − α z − 1 , ∣ z ∣ &lt; ∣ α ∣ X(z)=\frac{1}{1-\alpha z^{-1}},\vert z\vert &lt; \vert \alpha \vert X(z)=1αz11,z<α


  由上面两例可知,序列 x [ n ] = α n μ [ n ] x[n]=\alpha^n\mu[n] x[n]=αnμ[n] Z Z Z变换的表达式与序列 x [ n ] = − α n μ [ − n − 1 ] x[n]=-\alpha^n\mu[-n-1] x[n]=αnμ[n1] Z Z Z变换的表达式是一样的,但是它们的收敛域是完全不一样的,如果只给出其 Z Z Z变换的表达式,是不能判断其原信号是什么的。

Z Z Z变换的性质

  设序列 x [ n ] x[n] x[n] Z Z Z变换为 X ( z ) X(z) X(z),其收敛域为 R x − &lt; ∣ z ∣ &lt; R x + R_{x-}&lt;\vert z\vert &lt;R_{x+} Rx<z<Rx+,序列 w [ n ] w[n] w[n] Z Z Z变换为 W ( z ) W(z) W(z),其收敛域为 R w − &lt; ∣ z ∣ &lt; R w + R_{w-}&lt;\vert z\vert &lt;R_{w+} Rw<z<Rw+

线性性质

  设 y [ n ] = α x [ n ] + β w [ n ] y[n]=\alpha x[n]+\beta w[n] y[n]=αx[n]+βw[n],则其 Z Z Z变换为
Y ( z ) = ∑ n = − ∞ ∞ ( α x [ n ] + β w [ n ] ) z − n = α ∑ n = − ∞ ∞ x [ n ] z − n + β ∑ n = − ∞ ∞ w [ n ] z − n = α X ( z ) + β W ( z ) \begin{aligned} Y(z)&amp;=\sum_{n=-\infty}^{\infty}(\alpha x[n]+\beta w[n])z^{-n}\\ &amp;=\alpha\sum_{n=-\infty}^{\infty}x[n]z^{-n}+\beta\sum_{n=-\infty}^{\infty}w[n]z^{-n}\\ &amp;=\alpha X(z)+\beta W(z) \end{aligned} Y(z)=n=(αx[n]+βw[n])zn=αn=x[n]zn+βn=w[n]zn=αX(z)+βW(z)
其收敛域为 m a x { R x − , R w − } &lt; ∣ z ∣ &lt; m i n { R x + , R w + } max\{R_{x-},R_{w-}\}&lt;\vert z\vert &lt;min\{R_{x+},R_{w+}\} max{Rx,Rw}<z<min{Rx+,Rw+}

时移性质

  序列 y [ n ] = x [ n − n 0 ] y[n]=x[n-n_0] y[n]=x[nn0] Z Z Z变换为
Y ( z ) = ∑ n = − ∞ ∞ x [ n − n 0 ] z − n → m = n − n 0 z − n 0 ∑ m = − ∞ ∞ x [ m ] z − m = z − n 0 X ( z ) \begin{aligned} Y(z)&amp;=\sum_{n=-\infty}^{\infty}x[n-n_0]z^{-n}\\ &amp;\xrightarrow{m=n-n_0}z^{-n_0}\sum_{m=-\infty}^{\infty}x[m]z^{-m}\\ &amp;=z^{-n_0}X(z) \end{aligned} Y(z)=n=x[nn0]znm=nn0 zn0m=x[m]zm=zn0X(z)
除了其收敛域可能包含 0 0 0或者 ∞ \infty ,与原收敛域相同。

乘以指数序列

  序列 y [ n ] = α n x [ n ] y[n]=\alpha^nx[n] y[n]=αnx[n] Z Z Z变换为
Y ( z ) = ∑ n = − ∞ ∞ α n x [ n ] z − n = ∑ n = − ∞ ∞ x [ n ] ( z α − 1 ) − n = X ( z α ) \begin{aligned} Y(z)&amp;=\sum_{n=-\infty}^{\infty}\alpha^nx[n]z^{-n}\\ &amp;=\sum_{n=-\infty}^{\infty}x[n](z\alpha^{-1})^{-n}\\ &amp;=X(\frac{z}{\alpha}) \end{aligned} Y(z)=n=αnx[n]zn=n=x[n](zα1)n=X(αz)
其收敛域为 ∣ α ∣ R x − &lt; ∣ z ∣ &lt; ∣ α ∣ R x + \vert \alpha \vert R_{x-}&lt; \vert z\vert &lt; \vert \alpha \vert R_{x+} αRx<z<αRx+

反褶

  序列 y [ n ] = x [ − n ] y[n]=x[-n] y[n]=x[n] Z Z Z变换为
Y ( z ) = ∑ n = − ∞ ∞ x [ − n ] z − n → m = − n ∑ m = − ∞ ∞ x [ m ] ( 1 z ) − n = X ( 1 z ) \begin{aligned} Y(z)&amp;=\sum_{n=-\infty}^{\infty}x[-n]z^{-n}\\ &amp;\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m](\frac{1}{z})^{-n}\\ &amp;=X(\frac{1}{z}) \end{aligned} Y(z)=n=x[n]znm=n m=x[m](z1)n=X(z1)
其收敛域为 1 R x + &lt; ∣ z ∣ &lt; 1 R x − \cfrac{1}{R_{x+}}&lt;\vert z\vert &lt; \cfrac{1}{R_{x-}} Rx+1<z<Rx1

共轭

  序列 y [ n ] = x ∗ [ n ] y[n]=x^{*}[n] y[n]=x[n] Z Z Z变换为
Y ( z ) = ∑ n = − ∞ ∞ x ∗ [ n ] z − n = ( ∑ n = − ∞ ∞ x [ n ] ( z ∗ ) − n ) ∗ = X ∗ ( z ∗ ) \begin{aligned} Y(z)&amp;=\sum_{n=-\infty}^{\infty}x^{*}[n]z^{-n}\\ &amp;=(\sum_{n=-\infty}^{\infty}x[n](z^{*})^{-n})^{*}\\ &amp;=X^{*}(z^{*}) \end{aligned} Y(z)=n=x[n]zn=(n=x[n](z)n)=X(z)
其收敛域未发生改变,因为 ∣ z ∣ = ∣ z ∗ ∣ \vert z\vert = \vert z^{*}\vert z=z

时域微分

  由于
X ( z ) = ∑ n = − ∞ ∞ x [ n ] z − n X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n} X(z)=n=x[n]zn
所以
d X ( z ) d z = − ∑ n = − ∞ ∞ n x [ n ] z − n − 1 ⇒ − z d X ( z ) d z = ∑ n = − ∞ ∞ n x [ n ] z − n \frac{dX(z)}{dz}=-\sum_{n=-\infty}^{\infty}nx[n]z^{-n-1}\Rightarrow-z\frac{dX(z)}{dz}=\sum_{n=-\infty}^{\infty}nx[n]z^{-n} dzdX(z)=n=nx[n]zn1zdzdX(z)=n=nx[n]zn
所以序列 y [ n ] = n x [ n ] y[n]=nx[n] y[n]=nx[n] Z Z Z变换为
Y ( z ) = − z d X ( z ) d z Y(z)=-z\frac{dX(z)}{dz} Y(z)=zdzdX(z)
其收敛域可能去掉 0 0 0或者 ∞ \infty ,其余不变。

卷积

  序列 y [ n ] = x [ n ] ∗ w [ n ] y[n]=x[n]*w[n] y[n]=x[n]w[n] Z Z Z变换为
Y ( z ) = ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ x [ m ] w [ n − m ] z − n = ∑ m = − ∞ ∞ x [ m ] ∑ n = − ∞ ∞ w [ n − m ] z − n → l = n − m ∑ m = − ∞ ∞ x [ m ] z − m ∑ l = − ∞ ∞ w [ l ] z − l = X ( z ) Y ( z ) \begin{aligned} Y(z)&amp;=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]w[n-m]z^{-n}\\ &amp;=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}w[n-m]z^{-n}\\ &amp;\xrightarrow{l=n-m}\sum_{m=-\infty}^{\infty}x[m]z^{-m}\sum_{l=-\infty}^{\infty}w[l]z^{-l}\\ &amp;=X(z)Y(z) \end{aligned} Y(z)=n=m=x[m]w[nm]zn=m=x[m]n=w[nm]znl=nm m=x[m]zml=w[l]zl=X(z)Y(z)
其收敛域为
m a x { R x − , R w − } &lt; ∣ z ∣ &lt; m i n { R x + , R w + } max\{R_{x-},R_{w-}\}&lt;\vert z\vert &lt;min\{R_{x+},R_{w+}\} max{Rx,Rw}<z<min{Rx+,Rw+}
有时 X ( z ) X(z) X(z) W ( z ) W(z) W(z)的零极点可能会互相抵消,所以收敛域可能会比这个大。

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值