- 博客(27)
- 收藏
- 关注
原创 【C语言】fgetc的用法详解以及注意事项
摘要:fgetc是C语言中用于从文件流逐字符读取的函数,适用于文本解析、词法分析和二进制文件处理等场景。关键注意事项包括:返回值应为int类型以正确处理EOF,需在每次读取后检查EOF,文件指针位置会自动移动,读取错误需用ferror区分。相比批量读取函数,fgetc效率较低,大数据量时建议使用fread或fgets。常见错误包括:用char存储返回值、错误使用feof()判断文件结束、未检查文件状态及未关闭文件。合理使用fgetc时需结合具体场景考虑性能和正确性。
2025-06-06 15:56:04
586
原创 【C语言】内存分配的理解
很多时候我们声明变量,系统就自动为我们处理好了内存。这主要取决于内存分配发生的时间和内存区域。C语言中主要有以下3种内存分配方式。在我们读取遥感图像的例子中,因为图像尺寸 (width, height) 是从文件读取的(运行时才确定),而且图像数据可能很大,所以使用 malloc 在堆上分配内存是最合适、最安全、最灵活的方式。
2025-04-27 18:14:20
999
原创 【C语言遥感】计算能力测试,读取二进制文件,进行二元函数运算
用C语言分析遥感问题:获得了一个二进制数据文件,它代表了卫星影像的一个波段,具体来说是测量地表温度的热红外数据。数据以16位有符号整数 (short) 的网格形式存储。任务是分析局部的温度变化。
2025-04-27 17:46:40
709
原创 【二维相位缠绕】等相关概念——卫星雷达影像,以及数据流动案例(c语言)
在一个二维的数据场(比如图像或网格)中,每个点都有一个相位值(角度),但这些相位值被限制在了一个固定的 2π 范围内(如 (-π, π])。当相邻点之间的真实相位差跨越了这个范围的边界时,记录下来的相位值就会发生一个大小约为 2π 的突然跳变。这使得原本可能平滑变化的二维相位“表面”看起来像是布满了不连续的“悬崖”或“断层”。相位解缠绕(Phase Unwrapping)的目标,就是要识别并消除这些人为的 2π 跳变,恢复出那个隐藏在缠绕数据之下的、连续变化的、真实的二维相位分布。
2025-04-21 18:30:50
699
原创 【C语言】文件读取方法基础
要点总结包含 <stdio.h>。使用 FILE * 定义文件指针。使用 fopen() 打开文件,指定文件名和读取模式 ("r", "rb" 等)。必须检查 fopen() 的返回值是否为 NULL。根据需要选择合适的读取函数 (fgetc, fgets, fscanf, fread)。读取循环的条件应基于读取函数的返回值,而不是 feof()。在读取循环结束后,使用 feof() 和 ferror() 区分文件结束和读取错误。对于 fgets,注意提供足够大的缓冲区并处理注意提供足够大的缓冲区并处理可
2025-04-21 16:32:19
617
原创 【比较】常用大数据处理框架
Hadoop MapReduce Apache Spark Apache Flink Apache Storm Kafka Streams,常用大数据处理框架对比。
2025-04-20 20:21:24
891
原创 【概念】 Hadoop Distributed File System (HDFS)。
HDFS 是一个为处理和存储海量数据而生的分布式文件系统,它通过在廉价硬件集群上分布数据和计算,提供了前所未有的可扩展性、容错性和高吞吐量,成为大数据时代重要的基础设施之一,但其设计也决定了它不适用于所有场景,尤其不适合低延迟和小文件应用。
2025-04-20 20:05:33
961
原创 【概念】分布式文件系统与NoSQL数据库联系
分布式文件系统 (Distributed File System, DFS) 和 NoSQL 数据库是现代分布式系统中的两个重要组件,它们解决不同的问题,但又存在一定的联系,尤其是在大型数据架构中。
2025-04-20 20:03:40
586
原创 【分布式文件系统】介绍
分布式文件系统是分布式存储的一种实现,它与分布式块存储、分布式对象存储是同一层级、提供不同访问抽象和适用场景的存储解决方案。它们都属于分布式系统这个更大的范畴。互联网的兴起、大数据时代的到来、云计算的发展、科学计算(如基因测序、天体物理模拟)等场景产生了海量数据存储、高并发访问和高可靠性的需求,这些都极大地推动了分布式文件系统的发展和应用。像 Google 的 GFS 和开源的 HDFS 就是为了支撑大规模网络爬虫数据处理和 MapReduce 计算而诞生的典型例子。
2025-04-20 19:56:09
996
原创 【github包】__init__.py 的作用
对于你的项目结构,你可能会在 src/your_package_name/ 目录下创建一个 __init__.py 文件。根据你的需要,你可以让它保持为空,或者从你的 io_utils.py, projection_utils.py 等文件中导入核心的函数或类,让它们可以通过 import your_package_name 后直接访问。
2025-04-17 21:05:21
549
原创 【GEE】什么时候在客户端?什么时候在服务器?
客户端(浏览器):负责编排任务(写菜谱)、定义参数、处理用户界面、发起请求、处理少量返回结果。运行标准 JavaScript。服务器端(Google):负责执行繁重的计算、访问海量数据、并行处理。运行由 GEE API 调度的计算任务。
2025-04-16 20:37:40
843
原创 【单向流动】神经网络的理解
在神经网络中,信息只在一个方向流动(单向流动)的模型通常被称为前馈神经网络(Feedforward Neural Network, FNN),这是最基础、最经典的神经网络结构。与之相对的是循环神经网络(RNN)或双向神经网络,它们允许信息在多个方向上流动(如反馈或循环连接)。
2025-04-14 20:24:19
345
原创 【多层神经网络】的意义,对比单层神经网络(单个隐藏层)
虽然理论上单隐藏层神经网络(即“浅层网络”)确实可以近似任何连续函数(万能逼近定理,Universal Approximation Theorem),但在实际应用中,多层神经网络(深度网络)仍然具有不可替代的优势
2025-04-14 20:15:54
496
原创 FNN案例训练——实现一个单层的神经网络
定义单层神经网络,处理环形数据集,实现对大圆和小圆的分类。这是一个经典的二分类环形数据集,外圈大圆和内圈小圆分别代表不同类别,常用于演示非线性分类算法如SVM-RBF或神经网络的决策边界效果
2025-04-13 17:37:39
564
原创 FNN案例训练——python训练FNN案例(numpy训练感知器)
前馈神经网络(FNN, Feedforward Neural Network) 是最基础、最常见的神经网络结构,数据在网络中单向前传,没有循环和反馈。基于python训练FNN模型。
2025-04-12 14:49:42
723
原创 FNN的原理,应用场景,与其他网络的对比等。学习笔记
前馈神经网络(FNN, Feedforward Neural Network) 是最基础、最常见的神经网络结构,数据在网络中单向前传,没有循环和反馈。
2025-04-12 13:56:27
704
原创 云平台:AWS以及GCP
AWS(Amazon Web Services)和 GCP(Google Cloud Platform)是两个功能强大的云计算平台,提供了丰富的服务用于各种用途,比如网站托管、AI/ML训练、大数据分析、IoT、数据库托管、企业IT基础设施等。对Google产品(如Workspace, Gmail)整合需求强的团队。使用Oracle、Windows Server等传统IT的迁移项目。偏AI/ML研究、数据科学方向(如大数据分析、模型训练);企业级项目、需要丰富的服务支持;更大的市场生态(第三方支持多);
2025-04-11 23:34:17
230
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人